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Abstract
The field of conservation biology has a long history of incorporating diverse disciplines into 
its ‘toolbox’ for improved outcomes. One such discipline is conservation genomics, which 
has experienced fast-paced growth and development over the last decade and offers exciting 
opportunities to help achieve the vision outlined in Aotearoa New Zealand’s national strategy 
for biodiversity – Te Mana o te Taiao. However, integrating these emerging methodologies into 
meaningful conservation practice has proven challenging, mostly due to uncertainty around 
the utility of these data and effective allocation of limited funding. This report addresses these 
challenges by outlining potential strategies for utilising genetic/genomics in conservation 
from the perspective of predominantly early-career conservation researchers working as 
Te Tiriti o Waitangi partners. It is intended to initiate discussion among conservation 
practitioners and researchers, mana whenua and local communities. To support practitioners 
in identifying appropriate and cost-effective genetic/genomic tools, their associated costs 
and benefits for informing conservation management are presented. Because conservation 
genetic/genomic data generated for – and associated with – taonga (treasured) species are 
also taonga, the report emphasises the need for collaborative research partnerships that centre 
the needs, aspirations and expertise of mana whenua, and highlights key aspects of data 
management and sovereignty. A transdisciplinary approach to conservation that includes 
genetics/genomics is recommended. 

Keywords: conservation genetics, conservation genomics, molecular markers, Indigenous 
data sovereignty, threatened species management, New Zealand, genetic diversity, 
genome sequencing and assembly.  
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Cover illustration details

Kia taiao ora, kia tangata ora by Isobel Joy Te Aho-White combines the principles of science through a 
Western lens with Mātauranga Māori understandings of whakapapa. The structures of DNA and a phylogenetic 
tree are treated with traditional Māori design to bring them into a contemporary, multicultural context. 
Here the DNA is envisaged as pātiki kōwhaiwhai, a pattern seen on the rafters of wharenui, to represent 
manaakitanga (hospitality), our connection to the environment, and how nourishment of the environment in 
turn nourishes the people. Behind is an abstracted phylogenetic tree with a weaving pattern treatment based 
on raukūmara and poutama designs, to represent connections/whakapapa and learning respectively.
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1. Conducting conservation genetic/
genomic research in Aotearoa 
New Zealand

1.1 Introduction
The national strategy for biodiversity, Te Mana o te Taiao (DOC 2020), challenges Aotearoa 
New Zealand to restore and enhance biodiversity for future generations. Many taonga 
(treasured) animals and plants are threatened by habitat loss, disease, invasive species, 
incidental bycatch, direct hunting, and climate change. To achieve the vision of protection, 
restoration and sustainable use of biodiversity outlined in Te Mana o te Taiao, we must bring 
together diverse ways of knowing and seeing the world – each of which bring their own 
unique toolboxes, including the use of genetic/genomic data (Rayne et al. 2020). 

Genetic and genomic data provide a lens for exploring the interconnections, histories and 
future of populations through DNA. Such knowledge is critical to better understand the 
present state of our biodiversity and to co-develop robust, evidence-based management 
strategies for threatened species. For example, many populations face challenges associated 
with inbreeding, loss of genetic diversity and, ultimately, reduced capacity to respond to future 
change (i.e. adaptive potential1; de Villemereuil et al. 2019). Strategies such as conservation 
breeding programmes and conservation translocations (i.e. moving plants or animals to 
promote gene flow and enhance diversity for existing populations or establishing new 
populations; Seddon 2010) can play an important role in minimising inbreeding, increasing 
genome-wide diversity and enhancing adaptive potential (Mable 2019).

Recent technological advances and increased capacity and capability in the global genomics 
community further enable researchers and practitioners to ask new questions and revisit old 
concepts. For instance, the shift away from using a handful of neutral genetic markers toward 
whole-genome resequencing allows investigation of adaptive (/maladaptive) variation 
and has reignited interest in the role of structural variants (large-scale rearrangements 
within the genome; e.g. Lamichhaney et al. 2016; Weissensteiner et al. 2020). Similarly, 
developing research highlights the potential role of gene drives (a genome editing technology 
that increases the likelihood of an allele with a known beneficial or detrimental effect 
being inherited) in managing pest species or reintroducing critical genetic variation into 
threatened species (Dearden et al. 2018; Phelps et al. 2020).

However, the rapid expansion of conservation genetics/genomics puts researchers and 
practitioners under pressure to keep up to date with an increasingly complex toolbox 
(Taylor et al. 2017a). Here, genetic data refers to the use of a relatively small subset of 
variable loci assumed to be representative of the diversity present within the genome 
(the entire complement of DNA of an organism or species). Genomic data refers to data 
generated with high-throughput DNA sequencing methods to characterise genome-wide 
variation across many thousands of loci. Both data types have benefits and challenges 
associated with development and analysis that make them suited to specific applications. 
Beyond new tools (e.g. reduced-representation sequencing, whole-genome resequencing, 
genome editing technologies), the resulting datasets and their potential applications can 
be numerous and confusing. Further, existing knowledge, capabilities and aspirations vary 
widely across taxa. For example, while kākāpō (Strigops habroptilus) recovery is informed by a 
dedicated species recovery team and an extensive long-term dataset including a high-quality 

1 See Glossary for definitions of technical terms presented in bold font at first mention.
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pedigree and world-leading genomic data (www.nzgeo.com/stories/decoding-kakapo/,  
www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/research-for-the-future/kakapo125-
gene-sequencing/; Dussex et al. 2021; Galla et al. 2022; Guhlin et al. unpubl. data), recovery 
efforts for many other species – particularly invertebrates and fish – are still in the preliminary 
stages of establishing distribution records and measuring genetic diversity (Nelson et al. 2019). 

To navigate genetic/genomic technologies and co-develop conservation management 
approaches that (i) enhance biodiversity and (ii) empower all individuals and groups involved, 
scientists and conservation practitioners must prioritise clear communication and genuine 
partnership (Jarvis et al. 2020). Namely, the framing, co-development and application of 
genetic/genomic research should be determined by the species’ needs, as well as the needs, 
aspirations and expertise of the individuals and groups involved, especially mana whenua 
(tribal group(s) with customary rights over a defined area of land or territory, including the air 
and water; Collier-Robinson et al. 2019). In Aotearoa New Zealand, Te Tiriti o Waitangi (1840) 
provides such a framework for partnership between Māori and non-Māori. Further, the WAI 
262 claim and the subsequent Waitangi Tribunal report (Jones 2012) provide a clear mandate 
for mana whenua to maintain kaitiakitanga (stewardship) over data or resources arising from 
taonga species (Waitangi Tribunal 2011).

We are aware that conservation practitioners may have limited opportunities to delve into the 
capabilities and promise of genetic/genomic tools for conservation, particularly when they 
may not encounter such tools in day-to-day operations. In this review, we – a cross-institutional 
team of predominantly early-career researchers using genetic/genomic tools for conservation 
applications – provide an overview of existing genetic/genomic methodologies and the current 
and aspirational applications of such data for conservation. Many of these technologies 
may have been previously considered with regard to Aotearoa New Zealand’s bioheritage 
(Inwood et al. 2020), but here we focus on those aspects of greatest relevance to Te Mana 
o te Taiao in a conservation management context. We present a table of current attributes 
for existing genetic/genomic tools to assist conservation practitioners in identifying 
appropriate tools that can be further discussed with conservation genetic/genomic researchers. 
We also highlight the importance of data sovereignty and data management considerations, 
identify future tools and applications for these data, and consider ways in which we can 
enhance conservation outcomes by better facilitating such research in Aotearoa New Zealand.

1.2 Considerations for taonga species
As conservation genetic/genomic researchers in Aotearoa New Zealand, our research 
primarily involves species which are taonga to iwi, hapū and whānau. Through whakapapa 
(genealogy), data associated with these species are taonga in their own right, including data 
obtained through genetic/genomic methods (Collier-Robinson et al. 2019). Thus, one of the 
most critical aspects in the application of genetic/genomic data to Aotearoa New Zealand 
conservation is ensuring that research is undertaken in a manner that upholds Te Tiriti o 
Waitangi, recognises the rangatiratanga (authority) of mana whenua, the mauri of the species 
and ecosystems in question, and prioritises Māori research leadership (Harmsworth & Awatere 
2013). Trusted research partnerships that centre the needs, aspirations and expertise of 
mana whenua will enhance the capacity of Māori and non-Māori research partners to restore 
and enhance biocultural diversity (Rayne et al. 2020; Wehi et al. 2020a). Through iterative 
engagement, clear data management plans can be co-created that realise Indigenous data 
sovereignty and ensure benefit-sharing (see 1.4.2 Metadata collection and management). 
Although this contribution focuses on taonga species, we consider the research and 
data management practices described here to be broadly applicable across all Aotearoa 
New Zealand conservation genetic/genomic research.

http://www.nzgeo.com/stories/decoding-kakapo/
http://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/research-for-the-future/kakapo125-gene-sequencing/
http://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/research-for-the-future/kakapo125-gene-sequencing/
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While there is a growing scholarship that describes the need to engage with mana whenua 
when seeking to apply genetic/genomic tools to modern samples (Collier-Robinson et al. 2019; 
Hudson et al. 2020; Rayne et al. 2020) as well as identifying the whakapapa of human remains 
(e.g. Knapp et al. 2012b), there is relatively limited scholarship in regards to engagement 
relating to the use of historical samples originating from non-human organisms, whether held 
in museums or private collections (but see Wehi et al. 2021). In addition, the legal, ethical and 
social ramifications associated with environmental DNA (eDNA) research in an Aotearoa 
New Zealand context are rarely discussed in the peer-reviewed literature, despite the potential 
for unforeseen impacts on Indigenous communities where such data may identify (or fail to 
identify) links between Indigenous communities and the land (see Handsley-Davis et al. 
2021 for details). Further, emerging microbiome studies in conservation consider not just 
the genome of a focal taxon but also the genomes of its associated microbial communities 
(see 2.8 Microbiomes), which also contribute to the mauri of species and ecosystems. 
Researchers should be applying the same process of iterative engagement for genetic/genomic 
research pertaining to modern samples to the use of historical specimens, fossils, and 
environmental and microbiome samples, whether the focal taxa are extinct or extant, as such 
data is taonga (Collier-Robinson et al. 2019; Wehi et al. 2021). It is important to ensure that 
mana whenua have kaitiakitanga and rangatiratanga over such taonga data outputs, and that 
benefit-sharing is established, and we expand on related scholarship in 1.4.3 Data sovereignty.

1.3 Selecting an appropriate conservation genetics/genomics tool
As we describe in Chapter 2, the wide array of genetic/genomic methodologies can make 
choosing the appropriate data type(s) for specific conservation applications a daunting 
task. Conservation researchers and practitioners must clearly define research questions 
and conservation goals to facilitate this decision-making. The selected genetics/genomics 
approach may also be influenced by additional factors including ethical considerations 
regarding sampling strategies, timeliness of the method to inform management decisions 
and the potential for future applications of the data to answer other research questions. 

In terms of day-to-day management queries such as genetic sexing, existing partnerships with 
researchers may provide the platform for carrying out this work. For example, University of 
Canterbury researchers in the Conservation, Systematics and Research Team provide genetic 
sexing to recovery programmes free of charge when associated with active postgraduate 
research projects. There are also other opportunities for similar infrequent or intermittent 
projects on genetic sexing, species identification and wildlife forensics to be carried out 
by commercial service providers (e.g. EcoGene®), with larger genomic projects involving 
genomic sequencing for conservation delivered by commercial sequencing providers 
(e.g. The Elshire Group Ltd., Auckland Genomics, Otago Genomics Facility). In our experience 
as conservation genetic/genomic researchers, funding for conservation genetic/genomic 
projects is often obtained from external funding bodies (e.g. research grants on local, national 
or international scales) in combination with Department of Conservation (DOC) support. 
In these circumstances, excluding any in-kind contributions, DOC’s primary contribution to 
research projects is not financial, but rather the logistical support and institutional knowledge 
supplied throughout the development and implementation of a given research project 
(e.g. assistance with obtaining samples and critical metadata). As such, the financial cost of 
such research may not be the primary determinant in DOC’s decisions to establish a research 
project. However, a potential future challenge of the current funding system is that external 
research funding (particularly large national grants) is increasingly driven by the development 
of novel approaches and may become less accessible for routine conservation genetic 
applications using standard tools. Obtaining conservation genetic/genomic data should be 
considered a valuable investment as it represents a long-term resource for ongoing management.  
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With rapid technological advancements and broad overlap between many tools, there is no 
simple decision-making tool to help conservation practitioners select the methodologies that 
best fit the question at hand. In Table 1 we attempt to bridge this gap by providing estimates 
of costs, benefits and considerations when implementing the various tools described in 
Chapter 2. This table can be used as a starting point when considering implementation of 
genetic or genomic research to support conservation management. As sequencing costs 
continue to decline and new analytical methodologies are developed, many of the technical 
challenges associated with these tools will be reduced over time. Further, additional unforeseen 
benefits may arise. Other considerations for practitioners may include the extent to which 
routine conservation management may need to be altered to incorporate sample or (meta)data 
collection, or the potential downstream impacts of results on current management practice. 
Currently, genetic tools may appear more cost-effective than genomic tools across all measures 
described here and may still be sufficient to answer the question of interest. However, these 
efficiencies must be weighed against the known limitations of genetic data, particularly as 
we move towards assessment of adaptive (or maladaptive) variation (see 3.3 Characterising 
adaptive variation). 

One key technical challenge associated with the shift towards genomic methodologies is the 
increasing scale of the computational requirements (and consequently, additional financial 
costs) associated with analysis and storage of large genomic datasets. These requirements vary 
depending on the scale of the data, with population-level genomic analyses requiring access 
to high-capacity computational systems that can process and analyse data up to the scale 
of terabytes. While many institutions may provide local computing infrastructure, national 
and international services are also available (e.g. the New Zealand eScience Infrastructure 
www.nesi.org.nz, cloud computing services such as Amazon Web Services aws.amazon.com or, 
more locally, Catalyst Cloud catalystcloud.nz). Such services may incur additional expenses to 
projects and require specific data security considerations (see 1.4.3 Data sovereignty). 

1.4 Technical considerations for conservation  
genetic/genomic research
Clearly defining research questions and selecting appropriate sampling protocols and data 
management are key components of any research project. Data management plans are 
essential and should encompass the short- and long-term management (including curation, 
storage and access) of samples, raw data and associated metadata, and processed data and 
outputs. Such plans are particularly critical for large and/or long-term projects where many 
different people will be involved over the lifetime of the project. 

1.4.1 Best-practice sample collection and storage for genetic/genomic research

To ensure preservation for genetic/genomic purposes, where possible high-quality samples 
(e.g. blood, tissue) should be collected once per individual in accordance with local tikanga and 
stored in a manner appropriate for the intended downstream application (Fig. 1). For example, 
while storing samples in ethanol for downstream genetics/genomics is common and may 
be the most practicable method for population genomic research of widespread species, 
it impedes the use of the samples for transcriptome analysis. Collecting samples in ways 
that ensure usage for a range of potential downstream applications reduces the need for 
resampling, minimising stress on sampled individuals. These samples will act as a resource 
for future genetic or genomic applications, particularly those requiring high-molecular-weight 
DNA (e.g. long-read sequencing requires very high-quality DNA; Amarasinghe et al. 2020). 
Sampling, storage and DNA extraction protocols differ for eDNA and ancient DNA (aDNA) 
research, and relevant protocols should be followed (Hofreiter et al. 2001; Jarman et al. 2018). 

http://www.nesi.org.nz
http://aws.amazon.com
http://catalystcloud.nz
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In the absence of a centralised national repository, we encourage researchers to follow best 
practice for collection and curation of samples. Samples should be recorded in laboratory 
databases to minimise the potential for unnecessary resampling and to ensure sample 
usage can be tracked. Sample databases should capture individual identification, laboratory 
identification, type and quantity of raw material, and use of the material for analysis, along 
with all relevant metadata associated with the samples to provide the necessary context 
for downstream analyses (including data sovereignty details; see 1.4.2 Metadata collection 
and management). We encourage researchers and practitioners to collect other metadata 
(e.g. phenotypic data, ecological data) simultaneously with sampling where possible, 
providing broader downstream data applications.

Figure 1.   Sampling and storage requirements for various genetic/genomic tools currently in use. These should be considered the minimum 
requirements and are best considered in a broader context that includes an assessment of current and future use, as well as feasibility and cost. 

Note: aDNA = ancient DNA, eDNA = environmental DNA, RRS = reduced-representation sequencing, 3C = 3C sequencing technologies.

1.4.2 Metadata collection and management

Metadata refers to ‘data about the data’. For example, metadata associated with blood samples 
taken from individual birds may include information such as collection date, GPS location, 
species, individual identifiers (e.g. band/tag numbers), photographs of individuals and/or 
sampling locations, age/class, sex, pedigree (parents, siblings, offspring). Metadata associated 
with raw (unprocessed) genomic sequence data could include (but is not limited to) the 
genomic library preparation details, sequencing provider and platform, date of sequencing, 
individual or project barcode sequences, individual or location identifiers (where appropriate), 
and sequence quality scores. Metadata facilitates research reproducibility and data re-use 
(Duntsch et al. 2021; Toczydlowski et al. 2021). For processed data this may include details of 
analysis tools and software version numbers, reference genomes used for sequence alignment, 
or details of databases from which additional data was collected, or output data deposited. 

Metadata may also encompass records of consultation with mana whenua, ethics approvals 
and sampling permit numbers, lists of collaborators and contributors, sources of funding and 
publication outputs (e.g. student theses, journal articles, DOC internal reports). We recommend 
that relevant metadata are captured and stored alongside raw and processed data to ensure 
correct interpretation of the data (e.g. at minimum in README files alongside any reference 
genomes, spreadsheets capturing pedigree, phenotype or monitoring data, or captured in 
purpose-built databases such as that of the Genomic Observatories Metadatabase (GEOME); 
Riginos et al. 2020). An example of metadatabasing in Aotearoa New Zealand is that of the Ira 
Moana Project (sites.massey.ac.nz/iramoana/), aiming to aggregate metadata associated with 
primarily marine genetic/genomic studies based on international metadatabasing standards 
(Riginos et al. 2020).

http://sites.massey.ac.nz/iramoana/
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1.4.3 Data sovereignty

There is extensive scholarship regarding data sovereignty pertaining to human 
genetic/genomic data and growing scholarship pertaining to culturally significant species 
(e.g. Claw et al. 2018; Collier-Robinson et al. 2019; Caron et al. 2020; Hudson et al. 2020; Koia 
& Shepherd 2020; Potenski 2020; Walter et al. 2020; Handsley-Davis et al. 2021; McCartney 
et al. 2022; Rayne et al. 2022). In addition, multiple initiatives have been established to 
operationalise these concepts, such as the CARE principles for Indigenous data governance 
to complement the FAIR principles for data management (Wilkinson et al. 2016; Carroll et al. 
2020, 2021); Te Nohonga Kaitiaki (www.genomics-aotearoa.org.nz/projects/te-nohonga-kaitiaki; 
Hudson et al. 2021), Tikanga Tawhito: Tikanga Hou Kaitiaki Guidelines (https://www.taiuru.
maori.nz/guidelines-for-dna-research-storage-and-seed-banks-with-taonga-materials/; Taiuru 
2022); Biocultural Labels and Notices (localcontexts.org/labels/biocultural-labels/; Anderson 
& Hudson 2020; Liggins et al. 2021). For brevity, we do not reproduce existing scholarship here, 
but we urge researchers and practitioners to explore the resources referenced above and to 
centre mana whenua needs, aspirations and expertise in all aspects of research and practice. 
Below, we draw attention to four important, although not exhaustive, points for researchers 
and practitioners to consider:

i. To date, there have been disparities in the levels of protection given to different 
genetic/genomic data types, where genomic data are generally given greater protections 
than genetic data. However, engaging with scholarship such as Handsley-Davis et al. 
(2021) will better enable researchers and practitioners to communicate the risks and 
benefits associated with these data to mana whenua. 

ii. Discussion of project-specific considerations regarding data security and accessibility 
during analysis and long-term storage should be initiated at the outset of the project 
(Box 1). Many researchers will have access to centralised repositories maintained 
by their institutes (e.g. crown research institutes (CRIs) and universities), where 
data can be securely held on behalf of mana whenua, as existing international 
genetic/genomic databases may not yet be capable of meeting data sovereignty 
requirements. Existing data repositories can adapt to meet these needs through the 
inclusion of Biocultural Labels and Notices to indicate data provenance, associated 
ethics, permits, and expectations around appropriate use and to connect data back to 
Indigenous communities (Anderson & Hudson 2020; Liggins et al. 2021). Indigenous 
needs may conflict with the current global emphasis on open-access data availability to 
facilitate reproducibility of research, but these positions are not diametrically opposite 
(as discussed at length in international scholarship including Carroll et al. 2020, 2021; 
McCartney et al. 2022).

iii. Where mana whenua hold sovereignty over data, these data are not inaccessible for 
re-use. Instead, the onus is on researchers to engage with mana whenua to request 
access, providing transparency in the intended use, applications and potential 
downstream impacts of these data. 

iv. Similarly, international research journals must adapt to be responsive to Indigenous 
views and values. There has been concern among researchers around the ability to 
publish research when data sovereignty agreements may require restricted data access; 
however, international journals are beginning to respond to these needs (Potenski 2020; 
Liggins et al. 2021). Indeed, genomic research relating to Aotearoa New Zealand 
taonga has been successfully published with data hosted on behalf of mana whenua 
on password-protected local repositories (e.g. Galla et al. 2019, 2020; Rayne et al. 2022) 
and on the Aotearoa Genomic Data Repository (https://data.agdr.org.nz/; e.g. Oliphant 
et al. 2020; Miller et al. 2022). Until clear frameworks for data sovereignty are better 

http://www.genomics-aotearoa.org.nz/projects/te-nohonga-kaitiaki
https://www.taiuru.maori.nz/guidelines-for-dna-research-storage-and-seed-banks-with-taonga-materials/
https://www.taiuru.maori.nz/guidelines-for-dna-research-storage-and-seed-banks-with-taonga-materials/
http://localcontexts.org/labels/biocultural-labels/
https://data.agdr.org.nz/
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established, researchers and practitioners must continue to navigate open-access culture 
– particularly for methods such as eDNA which rely upon accessible databases – in ways 
that uphold the responsibilities mandated in Te Tiriti o Waitangi (Box 1).   

v. As researchers, practitioners and mana whenua continue to grow trusted relationships 
– in part, through meaningful engagement around data access and storage – we foresee 
opportunities to co-create more impactful research, including through local knowledge 
and benefit-sharing (e.g. Polfus et al. 2016; Bowles et al. 2020; Gros-Balthazard et al. 
2020; Henson et al. 2021; Rayne et al. 2022). Shared benefits may include opportunities 
to protect or enhance taonga, to grow tribal capacity – whether in Western science 
or through the growth of tribal knowledge, practices or processes – and/or to realise 
other diverse aspirations. We are encouraged by recent efforts to increase researcher 
accountability around benefit-sharing, e.g. through the introduction of mandatory 
benefit-sharing statements in some international journals.

 
Box 1.   Key questions to consider during iterative engagement with mana whenua when developing conservation 
genetic/genomic research projects.

Key questions to consider when engaging with mana whenua to develop conservation 
genetic/genomic research projects 

Engagement

Which iwi/hapū/whānau should researchers engage with? What opportunities will there 
be for benefit sharing? What information and koha (contributions) are required to support 
cultural expertise of mana whenua for any research to be considered? 

Scientists should not presume that all iwi/hapū/whānau will have the same knowledge, 
priorities and concerns, and careful engagement with all relevant parties will be key to 
reducing inequities relating to data management. 

Data generation

What will the sampling strategy involve (e.g. sample type, number of individuals, 
locations)? Where will samples be processed? What method of data generation 
will be used (e.g. microsatellites, whole genome resequencing)? Where will data be 
generated (e.g. local/overseas sequencing)? Where will the data be analysed (e.g. by 
local/international researchers on local/overseas computing platforms)? 

Data security

Where will the data be stored – including samples, raw and processed data and analysis 
outputs – before and after publication? How will genetic/genomic data be accessed 
by external researchers, before and after publication (e.g. on local servers, national/
international repositories)? How will associated metadata be managed? Is there a need for 
metadata anonymisation (e.g. to limit sample identification and protect sample locations 
and individual privacy) and how will this be implemented? If individuals, whānau, hapū 
or iwi contribute mātauranga, how will this be explicitly recognised and protected? 

To ensure preservation and protection of data associated with taonga species, a clear data 
management plan needs to be developed and implemented before initiation of research. 
It must be responsive to the needs, aspirations and expertise of mana whenua.
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2. Genetic/genomic data types and 
conservation applications
In this chapter we describe the genetic/genomic tools (presented in loose chronological 
order of development) currently used to inform conservation management and highlight 
opportunities and challenges for each of these tools. Each section is intended to be a stand-
alone description that can be referred to on an as-needed basis by conservation researchers 
and practitioners to support decision-making (along with Table 1). As this is a dynamic field, 
we recommend periodic review of these tools, their applications and limitations, along with 
those included in 3.5 Future conservation genetic/genomic research tools and directions. 

2.1 Pedigree data
Pedigrees – family trees showing genealogical relationships between individuals – are a 
long-standing tool used in biological sciences (Wright 1922). While pedigrees are not a 
molecular tool as such, we classify them as a genetic tool as they are used to monitor and 
understand relationships and variation between individuals. Over the past 40 years, pedigrees 
have become a staple of conservation management, allowing practitioners to manage the 
genetics of small populations by strategically pairing or translocating individuals to minimise 
inbreeding and maximise adaptive potential (Ballou & Lacy 1995; Ivy & Lacy 2012; Galla et al. 
2022). Using genealogical relationships, pedigrees can be used to produce estimates of kinship 
(i.e. relatedness) and individual inbreeding. Conservation breeding programmes currently 
prioritise pairing individuals with low mean kinship (i.e. relatedness between an individual 
and all others in a population). This paradigm can minimise genetic drift by maintaining 
the representation of the individuals that started the population (i.e. founders) to minimise 
loss of genetic diversity, inbreeding and adaptation to captivity (Frankham 2008; Lacy 2009). 
There are decades of empirical research and simulation studies that support this management 
approach to maximise neutral variation (e.g. Ballou & Lacy 1995; Rudnick & Lacy 2008); 
however, no standardised approaches to date have incorporated adaptive variation, which has 
only recently been able to be quantified (see 3.1 Characterising adaptive variation). Further, 
selection for/against individuals with adaptive/maladaptive traits (e.g. low hatching success 
or low immunocompetence) may inadvertently reduce the ability of populations to have 
sufficient evolutionary potential to adapt to future selection pressures.

Pedigrees represent an accessible tool for conservation management, as collecting and 
analysing pedigree data can be readily incorporated into routine management practices for 
most captive populations. Researchers in the zoo and aquaria communities have developed 
tools for studbook management (SPARKS, PopLink and ZIMS; Ballou et al. 2010; Faust et al. 
2019, www.species360.org) and pedigree analysis (PMx; Lacy et al. 2012), which has increased 
the uptake of this approach. While these management approaches have often been applied 
to captive or ex situ populations, their use is increasing for wild or semi-wild populations 
(Pemberton 2008). A reliable pedigree is an asset for creating pairing or translocation 
recommendations but can also be used to evaluate heritability of specific traits (Randolph et al. 
1981), understand the fitness and contributions of individuals to a population over time 
(Hunter et al. 2019) and model population growth and viability (Lacy 2000). 

http://www.species360.org
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2.1.1 Best practice for pedigree establishment and maintenance

There are four key practices when establishing an effective pedigree management system:

 • using a robust system to identify individuals to ensure correct assignment of 
relationships (Allen et al. 2019) 

 • collecting genetic data from founding individuals to evaluate relatedness (Bergner et al. 
2014; Hogg et al. 2019)

 • using monitoring technologies (e.g. cameras, RFID tags; Bonter & Bridge 2011) to ensure 
accurate breeding records, particularly when working with wild populations 

 • collecting tissue or blood samples from all individuals for downstream genetic analyses 
in the case of any uncertainties or known errors (Ryder & Feistner 1995; Frasier et al. 
2009). This can also facilitate downstream pedigree evaluation to assist with error 
detection and correction.

2.1.2 Challenges of pedigrees and genetic solutions

While pedigrees are an intuitive tool with diverse applications in conservation, they also have 
limitations (Fig. 2). First, pedigrees are unlikely to be developed for species other than those 
that are most threatened and/or geographically restricted, where individual identification 
and monitoring over multiple generations is both necessary and feasible. For most pedigrees, 
founding individuals are assumed to be unrelated, as their relationships are typically unknown. 
However, for threatened species that have experienced severe population bottlenecks, it is 
unlikely that the founders are completely unrelated (Bergner et al. 2014; Hogg et al. 2019). 
This ‘founder effect’ is exacerbated when pedigrees are shallow (< 5 generations recorded; 
Balloux et al. 2004; Pemberton 2004; Rudnick & Lacy 2008). In addition to the assumption 
regarding founder relatedness, pedigrees often struggle with missing data. This is particularly 
challenging for wild populations, where there may be difficulties in correctly identifying 
putative parents and offspring. 

Estimates generated from pedigrees are only as accurate as the pedigree itself, so accurate 
individual identification and knowledge of the breeding system of the focal species 
are essential for creating a robust pedigree. Incorrect identification of relationships 
between individuals resulting from extra-pair paternity (Ewen et al. 1999; Castro 
et al. 2004; Forsdick et al. 2021a) or nest parasitism (Overbeek et al. 2017) may impact 
conclusions drawn from pedigrees in the absence of molecular genetic data (Reid et al. 
2014). Such missing or erroneous data can be verified and corrected using genetic or 
genomic markers (Overbeek et al. 2020).

Where long-term intensive population monitoring is not feasible, post-hoc pedigrees can be 
generated from genetic or genomic data (Flanagan & Jones 2019). Further, relatedness estimates 
derived from pedigrees are probability-based and may not capture the exact extent of shared 
genomic variation (Bérénos et al. 2014; but see also Nietlisbach et al. 2017). Pedigree data used in 
conjunction with genomic data may provide the most precise estimates of relatedness to support 
conservation breeding programmes (e.g. genomic data can be used to estimate relatedness among 
founders; Hogg et al. 2018; Galla et al. 2020; Wright et al. 2021). 
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Figure 2.   Visualisation of various challenges identified within the kakī (black stilt, Himantopus novaezelandiae) pedigree, 
including (A) missing data, (B) interspecific hybridisation with poaka (Australian pied stilts, H. h. leucocephalus), (C) extra-
pair paternity, (D) individual identification or data transcription errors, and (E) nest parasitism by poaka. Credit: SJG.

2.2 Genetic data

2.2.1 Nuclear genetic data

Genetic data typically comprise a small number of short regions of the genome, assumed to be 
representative of the neutral variation of the whole genome. Common nuclear genetic markers 
include allozymes, AFLPs or RFLPs (amplified/restriction fragment length polymorphisms) 
and microsatellites. Such markers are usually derived from repetitive regions of DNA that 
can be highly variable between individuals, making them ideal for investigating diversity 
and differentiation within and between species (Forsdick et al. 2017), parentage (Castro et al. 
2004; Taylor et al. 2008; Overbeek et al. 2017), relatedness (Carroll et al. 2012) and interspecific 
hybridisation (Steeves et al. 2010; Cubrinovska et al. 2016), and in assessing the outcomes of 
conservation management actions (e.g. translocation outcomes; Heber et al. 2013). Genetic data 
also support wildlife forensics, tracking the illegal trade of wildlife and identifying the use of 
protected species in commercial products (Baker et al. 1996; Gentile et al. 2013; Ferreira et al. 
2015) and disease screening (e.g. beak and feather disease; Sarker et al. 2014). 

Genetic data can also be used to assess gene regions that may be under selection, such as 
those associated with immune function and mate choice (Miller & Lambert 2004; Kamiya 
et al. 2014; Grueber et al. 2015; Lillie et al. 2015; Sutton et al. 2015). Putatively adaptive loci 
(sites in the genome associated with genes) can be targeted and characterised through 
comparative genomics and species-specific primers (Alcaide & Edwards 2011; Grueber et al. 
2015). These data can help both with the management of detrimental alleles (Hedrick 2001) 
and with the maintenance of adaptive variation at specific loci within a population (Amos & 
Balmford 2001; Kohn et al. 2006).

2.2.2 Mitochondrial data

Mitochondrial DNA (mtDNA) differs from nuclear data in that it represents a short 
(15,000–20,000 base pairs (bp)), circular sequence of DNA specific to the mitochondria 
(known as the mitogenome) that is maternally inherited in vertebrates and found as 10s–1000s 
of copies in each cell (O’Hara et al. 2019). These properties make mtDNA useful independently 
or in combination with nuclear genetic markers for broad-scale comparisons of population-
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level diversity and differentiation (Chapple et al. 2012; Alexander et al. 2016; Mischler et al. 
2018), taxonomic delimitation and phylogenetic inferences (Boon et al. 2000; Banker et al. 
2017; Rosenbaum et al. 2017), and for investigating potential drivers of extinction, including in 
ancient DNA analysis (Allentoft et al. 2014; see 2.5 Ancient DNA). Taxonomic delimitation is of 
particular importance for prioritisation of conservation efforts, and complete or partial mtDNA 
data may be sufficient for such assessments when combined with nuclear genetic/genomic, 
morphological and behavioural data (but see Rubinoff & Holland 2005; Dincă et al. 2019; 
Pedraza-Marrón et al. 2019).

2.2.3 DNA profiling

DNA profiles consisting of genotypes constructed from multiple nuclear markers, sex-linked 
markers (those occurring on sex chromosomes that can be used to infer individual sex), 
and/or mtDNA markers (to confirm patterns of maternal relatedness) can also be used for 
genetic monitoring of species, including population demographic and genetic diversity 
estimates using repeated temporal samples (Carroll et al. 2018). Based on these samples, 
‘recaptures’ of DNA profiles of individuals can be used with mark-recapture models to estimate 
population abundances (Taberlet et al. 1999). These approaches can also be combined with 
parentage analysis in a gametic-mark-recapture framework, where genotypes of individuals can 
be ‘recaptured’ in offspring to estimate both abundance and population connectivity (Garrigue 
et al. 2004; Carroll et al. 2012). These approaches are particularly useful for estimating the 
abundance of rare or cryptic species (i.e. from feathers, fur or faeces; Bañuelos et al. 2019) and 
for species where photo-identification has limited applicability due to a low instance of natural 
markings and/or where tagging/banding is not possible (e.g. some cetacean species such as 
Hector’s and Māui dolphins; Baker et al. 2013; Hamner et al. 2014a, b, 2017). Individual-based 
DNA profiles can additionally be used to identify rare immigration/emigration events 
(Hamner et al. 2014a) and for monitoring genetic erosion (Leroy et al. 2018).

2.2.4 Limitations of genetic data 

Neutral genetic markers may be a poor proxy for adaptive variation (Marsden et al. 
2013; Grueber et al. 2015), especially for highly variable genes like those of the major 
histocompatibility complex associated with immune function (Sommer 2005). The relatively 
small numbers of markers used (e.g. as for microsatellites) may lack the resolution required 
for accurate estimation of relatedness and inbreeding in genetically-depauperate species 
(Taylor 2015). With rapid technological advances in genome sequencing in the past decade, 
genome-wide analyses are now possible that in many cases can provide improved resolution 
and accuracy compared with genetic approaches (Supple & Shapiro 2018; Galla et al. 2020). 

Specific limitations associated with mtDNA arise from its nature as a single 
non-recombining, maternally inherited genetic locus, meaning that it cannot be used 
to detect male-mediated gene flow and may be impacted by incomplete lineage sorting 
resulting from rapid diversification events (Paijmans et al. 2013). Furthermore, even the 
use of complete mitogenomes lacks the power and resolution of multiple unlinked nuclear 
loci (e.g. microsatellites, single nucleotide polymorphisms (SNPs); Teske et al. 2018). 
Thus, mtDNA is best applied in tandem with nuclear genetic or genomic data to inform 
species-specific conservation management. 

2.3 Reduced-representation genomic data
Reduced-representation sequencing (RRS) involves sequencing a subset of the genome 
to identify a set of genomic variants (e.g. SNPs) across all sequenced individuals. The two 
primary approaches are restriction site associated DNA sequencing (RAD-seq) and 
microarrays, although there are other approaches such as Genotyping-in-Thousands by 
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sequencing (GT-seq; Campbell et al. 2015b; Schmidt et al. 2020). These approaches have 
similar conservation applications as genetic markers but by identifying thousands or millions 
of variable sites provide much greater power and resolution in analyses, increasing confidence 
in the accuracy of estimates (Lemopoulos et al. 2019). 

2.3.1 RAD-seq data

RAD-seq encompasses a range of approaches (including Genotyping By Sequencing (GBS), 
reduced-representation libraries (RRL) and double-digest RAD-seq (ddRAD-seq)) that use 
restriction enzymes to target subsets of genome-wide loci (Andrews et al. 2016). RAD-seq in 
conjunction with a reference genome can provide robust estimates of genetic diversity and 
population structure while requiring relatively inexpensive sequencing and low computational 
resources. As a result, RAD-seq represents a cost-effective entry-point for conservation 
genomics where resources (both genomic and economic) may be limited (Andrews et al. 2016). 
This approach has particular advantages for species with large (> 3 Gb) or complex genomes, 
or where existing knowledge and/or resources are limited. 

RAD-seq approaches have been used to estimate genetic diversity (Zhang et al. 2019), 
population demographics (Kleinman-Ruiz et al. 2017; Marandel et al. 2020), parentage 
assignment and relatedness estimation (Thrasher et al. 2018), interspecific hybridisation 
(Colston-Nepali et al. 2019; Forsdick et al. 2021b; Attard et al. 2022) and population structure 
and gene flow (Dierickx et al. 2015; Lavretsky et al. 2019; Rexer-Huber et al. 2019; Rick et al. 
2019). Bioinformatic advances are enabling new and creative ways to leverage RRS to address 
a range of conservation questions (Dorant et al. 2020).

2.3.2 Microarrays

Microarrays are used to simultaneously genotype thousands of SNPs within and among 
populations at relatively low cost per individual. SNP-chips are one such microarray and 
are known for their low genotyping error rates and low rates of missing data. Development 
of a SNP-chip first requires identifying genome-wide variation. Most commonly, a reference 
genome is generated, against which resequencing data from 10–20 individuals is aligned 
for SNP detection (see 2.4 Whole-genome sequencing). A subset of SNPs is then selected for 
inclusion on the SNP-chip. SNP-chips usually only represent a small fraction of the genome 
(e.g. a SNP-chip comprising 50,000 SNPs from a bird with a 1.1 Gb genome represents 
< 0.01% of the genome). Microarrays typically require hundreds of samples for inclusion 
in each sequencing batch to be cost effective and so may not be the most feasible method 
for genotyping individuals from threatened species. Microarrays have been employed to 
investigate genotype-phenotype associations, trait heritability, population demographics and 
signatures of inbreeding in livestock and wild populations (Angeloni et al. 2012; Toro et al. 
2014; Duntsch et al. 2020; Latch 2020). 

2.3.3 Limitations of reduced-representation approaches

It is important to consider that RAD-seq and microarrays remain reduced-representation 
approaches, whereby only a small fraction of the diversity of a species’ genome can be 
explored. As such, RRS approaches will be superseded by genomic resequencing (see 2.4.2 
Population-level resequencing) for species with relatively small genomes (< 3 Gb) as sequencing 
costs continue to decline. RRS provides limited utility for characterising adaptive variation 
and limited ability to detect other important types of diversity such as structural variants. 
While RAD-seq approaches are relatively cost-effective, initial high development costs 
and large minimum sample sizes (hundreds or even thousands of individuals) required for 
microarrays limit their use for conservation in the absence of large-scale consortia involvement 
(where 10s–100s of researchers work towards a common goal, and substantial funding can be 
sourced) or long-term commitments to continued research, with more feasible applications 
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for human health and commercially significant species (e.g. sheep, Kijas et al. 2014; cattle, 
Harris & Johnson 2010). Additional challenges arise from ascertainment bias with microarrays 
(McTavish & Hillis 2015), or batch effects with RAD-seq approaches, whereby data generated 
from one sequencing batch may produce data of vastly different quality than that from another 
(Leigh et al. 2018). 

2.4 Whole-genome sequencing 

2.4.1 Reference genomes

Despite rapid developments in DNA sequencing technologies, it is not yet possible to 
sequence the entire complement of DNA of an organism in one piece. Thus, genomes 
must be assembled from many shorter sequences (analogous to puzzle pieces). Sequencing 
developments to date have increased the scale of sequencing to not only span more of 
the genome (sequence coverage), but also to do so many times (sequence depth; Fig. 3). 
Increased sequence depth increases the number of sequences produced that overlap with 
one another, allowing more accurate assembly of sequences into genomes. These high-
quality assembled genomes can be used as reference genomes to guide alignments of 
population-level reduced-representation or resequencing data (see 2.4.2 Population-level 
resequencing) for intraspecific comparisons of diversity and differentiation, or for direct 
interspecific comparisons. 

Figure 3.   Visualisation of genome sequencing and assembly concepts using the analogy of a genome as a puzzle made 
of many puzzle pieces. For example, the size of the kēkēwai/freshwater crayfish (Paranephrops zealandicus) genome 
is 2.71 billion (2.71 Gb) base pairs, or puzzle pieces. To be confident about the arrangement of puzzle pieces, each is 
sequenced many times to create overlapping sequences (sequencing depth; here ranging from 3–5×, but typically approx. 
40× for short-read sequencing for the purpose of genome assembly) from which sequencing and/or assembly errors can 
be identified and corrected. Coverage is the proportion of the genome that is sequenced. Credit: AR.

Initial conservation genomics research in Aotearoa New Zealand has been heavily biased 
towards birds. Reference genomes have been used to inform conservation management actions 
including breeding recommendations for kakī (black stilt, Himantopus novaezelandiae) 
and kākāriki karaka (orange-fronted parakeets, Cyanoramphus malherbi; Galla et al. 2020), 
assessment of adaptive potential in hihi (Notiomystis cincta; de Villemereuil et al. 2019) 
and research currently in progress aims to characterise the underlying basis of inbreeding 
depression and improve breeding outcomes for kākāpō (Guhlin et al. unpubl. data). 
Reference genomes are available for similar applications in other endemic species including 
kea (Nestor notabilis), North Island kōkako (Callaeas wilsoni), mohua (yellowhead, Mohoua 
ochrocephala), titipounamu (rifleman, Acanthisitta chloris; Zhang et al. 2014; Feng et al. 2020), 
kākā (N. meridionalis; Martini et al. 2021), kiwi (Apteryx spp.; Le Duc et al. 2015; Feng et al. 
2020), takahē (Porphyrio hochstetteri; Cheng et al. 2022), and tuatara (Sphenodon punctatus; 
Gemmell et al. 2020), and are coming online for kōwaro (Canterbury mudfish, Neochanna 
burrowsius), kēkēwai (freshwater crayfish, Paranephrops zealandicus) and wētāpunga 
(giant wētā, Deinacrida heteracantha), among others. 
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A reference genome acts as the foundation for population-level genomic analysis, and so the 
quality of a reference genome dictates its utility for downstream analyses. However, with the 
wide range of sequencing platforms, read lengths and computational pipelines for genome 
assembly, it is important to be aware that not all reference genomes are created equally. 
Substantial effort is required to produce high-quality reference genomes that can be used to 
address a wide breadth of conservation challenges. A fundamental requirement for sequencing 
and assembling high-quality genomes is a high-quality sample, obtained through best-practice 
sample collection and storage (see 1.4.1 Best-practice sample collection and storage for 
genetic/genomic research). Other requirements include a high level of technical knowledge 
and access to high-performance computational resources, particularly when working with 
large genomes (> 3 Gb). 

Although sequencing costs are decreasing, these combined costs remain high and, as a 
result, there will usually only be one high-quality reference genome produced per species. 
The increasing number of reference genomes available has been supported by the efforts of 
large consortia that aim to assemble genomes across a wide range of taxa and/or geographic 
locations (e.g. the Vertebrate Genomes Project, Genome 10K Community of Scientists 2009; 
Koepfli et al. 2015; Bat 1K, Teeling et al. 2018; the Earth BioGenome Project, Lewin et al. 2018; 
the Cetacean Genomes Project, Morin et al. 2020).

The majority of genomic data in Aotearoa New Zealand to date have been generated with 
short-read sequencing approaches, producing millions of DNA sequences (‘reads’) typically 
< 500 bp in length. High sequence depth (> 40-fold) is required to produce accurate genome 
assemblies from short-read data alone, but high-complexity repetitive genomic regions may 
remain challenging to accurately assemble even with high depth short-read sequencing. 

With improving technologies and decreasing costs, long-read sequencing technologies 
are becoming more accessible. Long-read sequencing can produce reads tens of thousands 
of base pairs long and is considered essential for assembly of large or complex genomes, 
such as for those species with polyploid or highly repetitive genomes (Scott et al. 2020). 
Compared to short-read sequencing alone, long reads act as a foundation to dramatically 
improve the ability to assemble high-quality genomes and ensure a greater proportion of 
the genome can be assembled more accurately (Fig. 4; Morin et al. 2020). To further improve 
assembly accuracy, existing short-read data may be leveraged to ‘polish’ a long-read genome 
assembly. Although highly beneficial for a range of applications, relatively high costs and 
limited availability of such long-read sequencing platforms in Aotearoa New Zealand, along 
with technical challenges associated with the extraction of high-molecular-weight DNA, 
may limit their use in the near future. 

Figure 4.   Visualisation of the difference between short- and long-read sequencing, using the 2.71 Gb kēkēwai (freshwater 
crayfish; Paranephrops zealandicus) genome as an example. When using short-read sequencing, large numbers of reads 
(analogous to small puzzle pieces) are required to cover the kēkēwai genome. Such short-read genomes typically have 
many gaps (regions of unknown sequence), particularly due to sequencing challenges associated with repetitive DNA 
regions. In comparison, long-read sequencing (represented by large puzzle pieces) requires fewer reads to cover the same 
genome, and these reads are better able to span repetitive regions, resulting in fewer gaps. Long-reads also facilitate 
improved scaffolding of genomes, where short-reads can be used to correct misassemblies and fill gaps (represented by 
the small puzzle pieces overlaid in the image for long-read sequencing. Credit: AR.
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Once considered unattainable for species of conservation concern, gold- or platinum-quality 
genome assemblies (i.e. ultra-high-quality genome assemblies, such as that for the kākāpō 
reference genome from the individual known as Jane) that represent complete or near-
complete chromosomes are becoming more common. Such high-quality genome assemblies 
require not only short-read sequencing technologies but also long-read sequencing and 
more recent sequencing developments such as the ability to capture the spatial structure 
of DNA within the nucleus (known as 3C sequencing, encompassing Hi-C and relatives, 
Belton et al. 2012; Ulahannan et al. 2019, preprint), and optical mapping (an image-based 
approach to sequencing to produce site-genomic distance data; Lam et al. 2012; Teo et al. 
2015). These emerging technologies provide additional context on the landscape of genes 
and regulatory elements within chromosomes, and enhance genome assembly quality and 
completeness (Lieberman-Aiden et al. 2009; Ghurye et al. 2019; Yuan et al. 2020). Stand-alone 
reference genomes can also be accompanied by a reference transcriptome, identifying 
the complement of genes encoded in the genome that characterise the phenotype of an 
organism, and that enable assessment of responses to environmental change or disease 
(see 2.7 Transcriptomics).

2.4.2 Population-level resequencing

Generating data to the level of resolution required for a reference genome at population-level 
scale remains prohibitively expensive. Resequencing data in combination with a reference 
genome can provide an affordable means to investigate diversity at the population level. 
In contrast with a reference genome where sequence data may be sourced from multiple 
platforms, resequencing data consists of short-read sequencing data of individuals at 
low–moderate coverage (< 30-fold). These short reads act like puzzle pieces that can then 
be aligned against the complete picture that is the reference genome. Sequences can then 
be compared against the reference and between individuals to identify genomic variants 
(e.g. SNPs) throughout the genome, allowing conservation-relevant metrics to be estimated 
with much greater accuracy than is possible using fewer genetic markers (Galla et al. 2020), 
including comparisons of genomic diversity and relatedness (Galla et al. 2020), population 
differentiation and structuring (Lado et al. 2020) and introgression resulting from interspecific 
hybridisation (Leroy et al. 2020), all of which can inform conservation management including 
translocations and conservation breeding programmes. 

Additional applications of resequencing genomes include the ability to investigate adaptive 
variation (Brandies et al. 2019; see 3.3 Characterising adaptive variation). This has broad and 
significant implications for understanding the genomic basis of traits important for management, 
such as those associated with adaptation (to the environment and/or captivity) and reproductive 
fitness (Angeloni et al. 2012; Hoelzel et al. 2019). To this end, leveraging genomic resequencing 
data beyond assessments of patterns of genetic diversity requires the use of data other than SNPs 
(see 3.5 Future conservation genetic/genomic research tools and directions). 

2.5 Ancient DNA
Ancient DNA (i.e. DNA isolated from old biological material, aDNA; Leonard 2008) provides 
a window into the past via the retrieval of DNA from sources including museum specimens, 
subfossils, sediment cores and coprolites. Ancient DNA can provide a useful tool for 
conservation managers as knowledge of past genetic diversity, geographic range expansions/
contractions and the factors that lead to population declines or extinctions is important 
for informing management decisions (Leonard 2008; Grealy et al. 2017). Much of Aotearoa 
New Zealand’s endemic biota has been driven to extinction or reduced to relictual distributions 
following human arrival, and so aDNA provides a means to examine the genetic composition 
of such species prior to anthropogenic impacts. 
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Examples of the use of aDNA to inform the conservation and management of endemic 
Aotearoa New Zealand species includes quantifying temporal declines in genetic diversity 
(Grueber & Jamieson 2008; Tracy & Jamieson 2011; Dussex et al. 2015; Bergner et al. 
2016), determining the origin of contemporary genetic structure (Tracy & Jamieson 2011), 
clarifying past distribution of species and populations/genetic lineages (Shepherd & Lambert 
2008; Wilmshurst et al. 2014; Verry et al. 2019; Scarsbrook et al. 2021), and characterising 
unsustainable harvesting rates that have driven species towards extinction (Rawlence et al. 2016). 

2.5.1 Challenges and limitations associated with aDNA

The degraded nature of aDNA requires the use of dedicated clean laboratory spaces 
and specialised laboratory and bioinformatic techniques (Knapp et al. 2012b). Care must 
be taken when generating and analysing aDNA as DNA degradation and/or modern 
DNA contamination can bias results and lead to erroneous conclusions. Furthermore, 
aDNA studies are often limited by small sample sizes, with available samples in museum 
collections/subfossil deposits unlikely to be representative of past populations. While much 
aDNA work to date has relied on mitogenome data due to the small mitogenome size and 
high copy-number making it relatively easy to characterise, decreasing sequencing costs 
mean it is becoming more feasible to generate nuclear genomic data from degraded samples. 
Primarily applicable to very well-preserved sources of aDNA (e.g. museum skins), sequencing 
of complete ancient nuclear genomes enables the direct comparison of past and present 
genetic diversity within populations of threatened species. This could be directly applied 
to some of Aotearoa New Zealand’s most threatened species (e.g. takahē and kākāpō), 
with well-preserved specimens collected from the 1800s onward present in museum 
collections (Grueber & Jamieson 2008; Dussex et al. 2018). 

2.6 Environmental DNA 
Environmental DNA (eDNA) has recently gained conservation interest due to its ability to 
detect rare, cryptic and invasive taxa on broad scales via non-invasive environmental sampling 
from water, soil and air (Taberlet et al. 2012, 2018). Methodologies can be species-specific 
(targeted eDNA) or have broad multi-species applications (eDNA metabarcoding), 
with sensitivity often equal to or greater than traditional species detection and monitoring 
methods using netting, electrofishing or underwater videos (Lodge et al. 2012; Lacoursière-
Roussel et al. 2016; Olds et al. 2016; Evans et al. 2017; Stat et al. 2019; Goutte et al. 2020). 
Non-invasive sampling minimises disturbance and physical harm, which could be critical in 
studies of threatened species such as hoiho (yellow-eyed penguin, Megadyptes antipodes; 
Ellenberg et al. 2007, 2013; Young et al. 2020). 

While eDNA methodologies can be as or more cost effective than traditional sampling and 
monitoring (Shaw et al. 2016; Evans et al. 2017; Lugg et al. 2018), patterns of eDNA dispersal in 
the environment must be understood in order to characterise the presence of taxa (Jane et al. 
2015; Barnes & Turner 2016). Studies of eDNA dispersal through marine water have shown 
that macrofaunal signals do not travel far (< 1 km) and may remain stratified within water 
layers, particularly within marine environments and other large, slow-moving bodies of water 
(Eichmiller et al. 2014; Jeunen et al. 2020). Thus, eDNA can be applied to detect species 
presence or composition in specific sites within water bodies. In comparison, lotic bodies of 
water such as rivers may carry eDNA far downstream (> 10 km), influencing species detection 
far from the source (Deiner & Altermatt 2014; Carraro et al. 2018). Increasingly, air eDNA 
methods are being explored (Clare et al. 2021; Clare et al. 2022; Lynggaard et al. 2022) along 
with other novel approaches (Gregorič et al. 2022).
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2.6.1 Conservation applications of environmental DNA

Conservation applications of eDNA include biosecurity (Pochon et al. 2017), site occupancy 
modelling (Muha et al. 2017) and detection of cryptic pest species in managed areas 
(Ramón-Laca et al. 2014). Detecting species presence or composition using eDNA methods 
may supersede current species monitoring methods and facilitate assessment of environmental 
stressors on ecosystems, such as those resulting from primary production (Laroche et al. 2018; 
Macher et al. 2018).  

Environmental DNA can also be used to assess wildlife and ecosystem health (Hall et al. 2016; 
Strand et al. 2019; Schadewell & Adams 2021) and understand species interactions (Farrell 
et al. 2000; Bleijswijk et al. 2014; Nichols et al. 2015). Within Aotearoa New Zealand, analysis of 
faecal eDNA has been used to infer the diets of kekeno (New Zealand fur seal, Arctocephalus 
forsteri; Emami-Khoyi et al. 2016), kororā (little blue penguin, Eudyptula minor; Murray et al. 
2011), hoiho (Young et al. 2020) and Bryde’s whales (Balaenoptera edeni brydei; Carroll et al. 
2019). Environmental DNA-based diet analysis is especially useful for analysing soft-bodied 
prey, which are otherwise difficult to identify. For example, establishing the earthworm diet 
of the endangered endemic carnivorous land snail (Powelliphanta augusta) can inform habitat 
restoration and site suitability for translocations (Waterhouse et al. 2014).  

Environmental DNA also has potential as a tool for monitoring species abundance and 
measuring population genetic diversity and differentiation. There is increasing interest in 
the correlation between eDNA abundance and species biomass with applications for tracing 
migratory patterns or spawning activity (Doi et al. 2015; Laramie et al. 2015; Bylemans et al. 
2017; Thalinger et al. 2019; Yates et al. 2019), although analytical challenges remain regarding 
the impacts of factors such as size, age and cell/naked DNA shedding rates (Iversen et al. 
2015; Klymus et al. 2015; Vasselon et al. 2018). There is also growing evidence that eDNA can 
be used to estimate conservation-relevant metrics including genetic diversity and population 
structure in species that are challenging to sample (Parsons et al. 2018; Adams et al. 2019; 
Stepien et al. 2019; Tsuji et al. 2020; Adams et al. 2022, preprint). 

2.6.2 Limitations of environmental DNA

Environmental DNA is best used in tandem with traditional biodiversity surveying methods, 
as open-access sequence databases may be depauperate of target taxa due to regional biases 
or data-access limitations (Porter & Hajibabaei 2018; Sato et al. 2018). Additional limitations 
arise from the high sensitivity of eDNA studies that can increase the risk of false positive 
or false negative presence identification results due to faecal deposits by mobile predators, 
extreme weather events, data-deficient databases, insufficient sampling and field or laboratory 
contamination (Merkes et al. 2014; Goldberg et al. 2016; Dickie et al. 2018; Staley et al. 2018; 
Furlan et al. 2020; Ragot & Villemur 2022). As with aDNA methodologies, dedicated clean 
laboratories are required to minimise the potential for contamination (Goldberg et al. 2016).

With the growing use of eDNA tools in Aotearoa New Zealand and abroad, the applications for 
these tools are diversifying. While the metabarcoding of water and soil samples is increasingly 
utilised, alternative substrates, such as air (Johnson et al. 2019; Clare et al. 2021, 2022; 
Lynggaard et al. 2022; Roger et al. 2022), remain less explored. Further, there is variability in 
species identification databases (Corfe-Tan et al. 2019; Othman et al. 2020; Banerjee et al. 2021; 
Ito et al. 2022, preprint). eDNA techniques rely on access to accurate, complete databases of 
reference sequences from known taxa, making such databases a critical component for eDNA 
analyses. Widespread sampling is needed to generate baseline eDNA data and populate 
reference databases, and can be delivered through community-driven science initiatives 
(e.g. the Environmental Protection Agency’s Wai Tūwhera o te Taiao – Open Waters Aotearoa 
programme https://www.epa.govt.nz/community-involvement/open-waters-aotearoa/). 
Increasingly, companies such as WilderLab Ltd. are contributing to community science efforts 

https://www.epa.govt.nz/community-involvement/open-waters-aotearoa/


22 Forsdick et al. 2022–Genetic/genomic data for conservation in Aotearoa New Zealand

to census local biodiversity through the provision of sampling kits, sequencing and analysis. 
Currently in Aotearoa New Zealand however, reference sequences for many species are 
absent from such databases. Nevertheless, eDNA techniques hold great promise for species 
and ecosystem monitoring in Aotearoa New Zealand, and such research will flourish through 
partnerships with mana whenua.

2.7 Transcriptomics
Although every cell within an organism contains the same set of genes, not every gene 
is active in every cell. The transcriptome represents the complete set of RNA transcripts 
reflecting the expression of genes produced from the genome of a cell, tissue or organism at 
a specific development stage or physiological condition (Wang et al. 2009). The function and 
composition of these transcripts is essential for our understanding of an organism’s phenotype. 
Two key aims of transcriptomics relevant to conservation are to (i) quantify changing gene 
expression during development or stress and (ii) annotate a genome by cataloguing all 
transcripts. Various technologies have been developed for transcriptomic research, with 
RNA sequencing (RNA-seq) propelling transcriptomics beyond clinical biology applications 
(Wang et al. 2009; Todd et al. 2016). Unlike whole-genome sequencing where reads are aligned 
to an assembled reference to improve confidence and resolution, RNA-seq does not require any 
prior knowledge of the transcriptome, making it particularly useful for the study of novel traits 
in non-model organisms (organisms that have not been used for extensive research, unlike 
those used in clinical applications such as mice, rats, etc.; Alvarez et al. 2015; Todd et al. 2016). 

Transcriptomics facilitates genome annotation, identifying features such as gene coding 
regions that enhance the utility of reference genomes (Yandell & Ence 2012). Accurate genome 
annotation enables an understanding of gene expression changes, and identification of genes 
associated with disease and other traits that may be relevant for conservation (Videvall et al. 
2015; Connon et al. 2018). Many of these annotations can be predicted using existing databases 
or inferred from closely related species (Ekblom & Wolf 2014; Aken et al. 2016; Dominguez Del 
Angel et al. 2018), but transcriptome sequencing may be required for accurate annotation of 
novel gene models in non-model species (Trapnell et al. 2010). 

As gene expression within a cell can be affected by stage of development, environment or 
stress (Wang et al. 2009), transcriptome sequencing for genome annotation often requires 
sequencing of various tissues, sexes and life stages to accurately represent the diversity of 
gene expression in a species. Gene expression changes in response to stress or across 
development can be profiled in an individual cell, specific tissue or the whole organism 
(Todd et al. 2016; Kulkarni et al. 2019). These gene expression changes are frequently 
referred to as the up- or down-regulation of a gene (Costa-Silva et al. 2017). Historically, gene 
expression changes were often assessed in individual genes; however, with the rise of RNA-seq 
whole transcriptome profiling has now become possible for almost any organism (Alvarez et 
al. 2015; Todd et al. 2016). Population-level transcriptomic data can also be used to identify 
genomic SNPs, thereby enabling acquisition and comparison of two data types from a single 
sequencing method (Lopez-Maestre et al. 2016). 

2.7.1  Conservation applications of transcriptomics

Transcriptome profiling is the most efficient way to acquire a comprehensive snapshot 
of an organism’s physiological state and has the potential to have an immense impact on 
understanding wildlife health (Fig. 5), particularly for understanding the processes of and 
response to disease in non-model species (Field et al. 2015; Videvall et al. 2015; Campbell 
et al. 2018). Transcriptome profiling differs from genome annotation in that it is typically 
restricted to a single tissue type. Combining transcriptomics with other epidemiological 
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data can explain why populations differ in their functional response to a disease. Although 
assessments of wild populations can be challenging, a recent study on lethal viral infections 
in amphibians successfully used infected and non-infected wild populations to understand 
how a history of disease alters a population’s gene expression profile (Campbell et al. 2018). 
Greater understanding of disease history and population diversity can facilitate management 
of adaptive variation relating to immunity and development in wild populations. 

Figure 5.   Two examples of the use of transcriptomics to inform conservation management. Example A compares 
hypothetical immune gene expression changes between healthy and diseased samples across populations. Gene 
expression changes are displayed as the log-fold change between samples, where each box represents the log fold-
change in expression of various genes between diseased and non-diseased samples from three populations (X, Y and Z). 
Genes that are up-regulated (green) have higher rates of expression in diseased samples. Due to connectivity between 
genes, up-regulation in one gene can result in down-regulation of others (brown), and vice versa. In this example a 
stronger immune response is seen in population Z. Example B compares hypothetical stress responses in an insect 
population reared in current and future climate conditions. Different genes display different levels of regulation across 
stages of development. In this example, log-fold changes are greater in populations reared in future conditions than 
in current conditions. Combined with ecological and physiological data, these types of studies can provide information 
on the adaptive potential of a species. Credit: EJD.

With climate change increasingly affecting environments, there is a growing need 
to understand organisms’ resilience to change (Somero 2010; Moritz & Agudo 2013). 
When incorporated with ecological and physiological data, comparative transcriptomic 
assessments across environments can infer a population’s physiological capacity to respond 
to changing environmental conditions (Seebacher et al. 2015; Kelly 2019; Anderson & Song 
2020). Such studies typically involve moving wild individuals into controlled laboratory 
environments where they can be exposed to predicted future conditions (Narum & Campbell 
2015; DeBiasse & Kelly 2016; Riddell et al. 2019). For example, research into the adaptive 
potential of an Afrotropical butterfly (Bicyclus anynana) has shown that despite expressing two 
distinct phenotypes in dry and wet seasons, this species has limited adaptability in the face of 
environmental change (Oostra et al. 2018). Research in this area can support conservation 
practitioners in making proactive management decisions regarding climate change. 

2.7.2 Challenges and limitations for conservation transcriptomics

Transcriptomics has made significant contributions to our understanding of physiology, 
evolutionary biology and ecology; being particularly useful in gaining understanding of 
responses to disease or stress. However, it is still under-utilised in conservation biology 
(Alvarez et al. 2015; Todd et al. 2016; Connon et al. 2018), mainly because of the technique’s 
requirement for destructive sampling of individual tissues under tightly controlled conditions. 
To detect meaningful gene expression differences requires the ability to distinguish true 
differential expression from background noise (Todd et al. 2016). For example, to understand 
response to disease it would be beneficial to compare multiple samples of both infected 
and uninfected individuals from the same population (i.e. genetic background), sex and 
developmental stage in identical environmental conditions. Such experimental protocols are 
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often difficult to enact in wild populations of threatened species and as a result, conservation 
transcriptomic studies may remain limited (Connon et al. 2018). However, for species 
adversely impacted by disease or rapid environmental change, researchers and practitioners 
may need to consider whether the knowledge potentially obtainable from transcriptomic 
approaches outweighs the costs of lethal sampling. Research into the adaptability of species to 
environmental change can facilitate proactive conservation in the face of climate change and 
could be prioritised to focused on high-risk species identified via climate change vulnerability 
assessments (Wheatley et al. 2017), while considering species interactions (Hance et al. 2007; 
Memmott et al. 2007). 

2.8 Microbiomes
So far, this discussion of conservation genetics and genomics has been largely restricted to 
species-specific approaches. However, the microbiome – the microorganisms that reside on or 
within the tissues of a host species, including bacteria, fungi, and viruses – has the potential 
to offer insights into key conservation questions (West et al. 2019). Although initial research 
into host-associated microbiomes was largely based on human health and model organisms 
(Gilbert et al. 2018; Davidson et al. 2020), here we review some ways in which microbiome 
studies may inform conservation.

Just as conservation-relevant processes such as population bottlenecks leave an impact 
on the genome, the microbiome can also be affected. For example, Asian tiger mosquitoes 
(Aedes albopictus) introduced to Italy show lower microbiomic diversity than mosquitos from 
within the native range (Rosso et al. 2018). Additional processes that can impact microbiome 
diversity include captivity (e.g. Tasmanian devils (Sarcophilus harrissii); Cheng et al. 2015; and 
other species as summarised by West et al. 2019), poor physiological condition of individuals 
(e.g. fasting humpback whales, Megaptera novaeangliae; Vendl et al. 2020) and the presence 
of pathogens (Van Cise et al. 2020). Reductions in microbiome diversity are important as 
they are associated with negative health outcomes (Vangay et al. 2018). Many host organisms 
rely on symbionts for defence against pathogens (Vorburger & Perlman 2018; McLaren & 
Callahan 2020), and the microbiome can directly impact behaviour and memory in some 
species (Davidson et al. 2020). In addition, perturbation of the microbiome could have other 
consequences, as it appears to have an important role in local adaptation (Suzuki et al. 2019) 
and adapting to a changing world (Cunning & Baker 2020; Voolstra & Ziegler 2020), which may 
be important to consider when planning translocations. 

Aspects of the microbiome could also be useful for individual and/or population monitoring. 
In humans, the skin microbiome can predict the age of an individual to within approximately 
4 years (Huang et al. 2020b). When applied to species of conservation concern, similar 
analyses may allow for previously unknown individuals to be aged, which may be valuable 
when correcting pedigrees. Rapidly evolving microbes can help uncover patterns not evident 
in host genomes, especially when the host has low genetic diversity due to recent population 
bottlenecks (Wirth et al. 2005). For example, genetic investigation of feline immunodeficiency 
virus revealed previously uncharacterised population structure and demography in cougars 
(Puma concolor; Biek et al. 2006). Similarly, extension of current genomic analyses for 
demographic inference to microbiomes could increase temporal resolution to conservation-
relevant time scales. Finally, monitoring the microbiome of individuals released from captivity 
could be used as a measure of translocation success as the microbiome shifts towards that 
seen in wild conspecifics (e.g. Tasmanian devils, Chong et al. 2019). Despite microbiome 
analyses for conservation being a relatively new field of interest, these methods have already 
been applied to threatened Aotearoa New Zealand species, including the critically endangered 
kākāpō (Waite et al. 2014; Perry et al. 2017). Such exploratory microbiome studies represent 
the first steps towards actively incorporating ‘microbial rescue’ into conservation strategies 
(West et al. 2019; Mueller et al. 2020). 
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2.8.1 Methodological considerations associated with microbiome analysis

Careful sampling design is essential when undertaking microbiome studies to inform 
conservation (Knight et al. 2018). Considerations should include which tissue types the 
microbiome will be sampled across (e.g. gut, faeces, skin, oral), and whether sampling will 
be sufficient to control for individual age and sex, seasonal differences and other confounding 
effects. Metadata should be collected on all of the above and any other factors that could 
influence microbiome composition, as microbiome data is only as useful as the metadata 
that accompanies it (Goodrich et al. 2014; Knight et al. 2018). 

Following the design of the microbiome sampling experiment, sample collection can 
commence. Because microorganisms are present in most environments, sampling blanks must 
also be collected at various stages to control for the presence of background environmental 
or laboratory contamination (Knight et al. 2018; Karstens et al. 2019). Correct sample storage 
is also key to ensuring the extraction of ultra-high-quality DNA (as per the requirements 
for reference genome sequencing). Some microorganisms are resistant to standard DNA 
extraction techniques and may require specialised protocols. It is good practice to also extract 
DNA from a ‘mock community’ with a known species composition to evaluate biases in the 
quantities of DNA extracted from different microorganism species. 

Finally, the profiling approaches to be taken after extracting microbiome DNA must be 
determined. The most common current approach is to target small nuclear regions of genomes 
using PCR amplification so that microbial species (e.g. bacteria, fungi) can be identified 
(Knight et al. 2018). The advantage of a PCR-based approach is that multiple samples can be 
included in a single sequencing run, reducing costs. However, this may be dependent on PCR 
primer choice, as not all species will be amplified equally, and so the results may not reflect the 
extracted DNA. In addition, PCR-based approaches can amplify background contamination 
(Karstens et al. 2019). An alternative is a more expensive metagenomic resequencing approach 
(similar to that mentioned in 2.4.2 Population-level resequencing) to sequence the genomes of 
the microorganisms present in the sample. This approach can also be used to identify the entire 
microbial community and characterise adaptive variation present in the sequenced DNA. 

Additional challenges of microbiome analysis include preventing DNA of the host organism 
from overwhelming microbial DNA during sequencing (Knight et al. 2018). As downstream 
analyses generally include comparing microbial community richness and composition 
between groups of interest (e.g. captive versus wild animals), microbiome research is limited 
by the availability of microbial sequences in reference databases. 



26 Forsdick et al. 2022–Genetic/genomic data for conservation in Aotearoa New Zealand

3. Future conservation genetic/genomic 
research tools and directions
In Chapter 2 of this report we summarised the current state of play for genetics and genomics 
in Aotearoa New Zealand. We highlighted the dynamic nature of the presently available 
tools for conservation applications. In addition to a growing number of conservation 
genetics and genomics research projects utilising these tools, existing approaches are 
being combined to create new tools; for example, the combination of aDNA and eDNA to 
investigate ancient environmental DNA (aeDNA) is applicable to restoration ecology as 
eDNA binds to substrates and therefore can provide information on past species’ presence 
(Wilmshurst et al. 2014; Buxton et al. 2017; Hofman & Rick 2018). In addition, emerging 
techniques promise to expand the conservation genetic/genomic toolbox. In the following 
text we identify aspirational applications for existing genetic/genomic tools and for those in 
development and suggest potential strategies to further support this developing landscape. 
The majority of tools discussed here are still in development for use in well-characterised 
systems (i.e. model organisms, with relevance to human health or primary industry), and their 
utility in a conservation context is yet to be proven. It would be disingenuous to overpromise 
on the conservation applications of these emerging tools, and so we have taken a cautious 
approach throughout to describe both the opportunities and challenges of these tools for 
conservation in an Aotearoa-specific context. Nevertheless, these developments all contribute 
to building the foundations for a bright future in the genetics/genomics research space with 
strong relevance for conservation.  

3.1 Pangenomes and genome graphs
In the future, we anticipate that genomics will be applied more broadly to capture population- 
or species-level diversity with pangenomes. Pangenomes incorporate multiple individual 
reference genomes to capture the entire complement of diversity within a species, enabling 
researchers to differentiate between ‘core’ (genes and gene regions fixed in all individuals) 
and ‘accessory’ (genes and gene regions that are variable) genomic regions (Tettelin et al. 
2005). Pangenomes can be represented by genome graphs, allowing visualisation of multiple 
genomes simultaneously by representing core genomic regions as a single structure and 
accessory regions as alternative ‘paths’ for read alignment (summarised by Ameur 2019). 
The application of pangenomes and genome graphs promises to be a significant advancement 
in the field of conservation genomics, as highly complex and rare traits may be characterised 
in individuals of interest (Gao et al. 2019; Bayer et al. 2020), including those that hinder 
species recovery.

3.2 Chromosomics and structural variants     
Chromosomics integrate cytogenetics and whole-genome sequencing to study chromosomal 
diversity (Potter & Deakin 2018; Deakin et al. 2019). This discipline goes beyond characterising 
(SNPs) to include analysis of structural variants (SVs). SVs represent a source of genomic 
variation likely to have large phenotype effects (e.g. Dorant et al. 2020; Huang et al. 2020a; 
Derežanin et al. 2022): SVs are large rearrangements (> 50 bp) within the genome that 
impact the form and structure of chromosomes, and include regions of the genome that are 
inverted, translocated from one location to another, inserted, or even lost entirely. Recent 
genomic research from human clinical studies and primary industry indicates that SVs are 
a significant source of genomic variation, as they have been found to intersect with gene 
coding regions more often than SNPs and impact a greater proportion of the genome overall 
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(Chiang et al. 2017; Catanach et al. 2019). As such, the high likelihood that complex traits 
(e.g. reproductive traits in birds; Huynh et al. 2011; Küpper et al. 2016; Kim et al. 2017; Knief 
et al. 2017) are determined by SVs make them of interest for conservation. The large and 
complex nature of SVs cannot be adequately captured by short-read sequencing (see 2.4 
Whole-genome sequencing), and so approaches that combine cytogenetics and long-read 
sequencing are currently being developed to reliably characterise SVs in threatened species. 
Moving forward, we anticipate that combining pangenomic and transcriptomic approaches will 
facilitate research into adaptive variation (see 3.3 Characterising adaptive variation; Alonge 
et al. 2020; Bayer et al. 2020; Golicz et al. 2020; Liu et al. 2020), with potential applications 
including modelling the ability of species to adapt to future climate change or novel diseases. 
Collaboration with primary industry researchers has proven fruitful for conservation genomic 
research, due to the overlap in research interests pertaining to small populations (Galla et al. 
2016). As much of the work regarding pangenomes and SVs to date has focused on crop 
species, continued collaborations with primary industry researchers will further enhance 
conservation research in these areas. 

3.3 Characterising adaptive variation      
Traditional population genetics approaches investigate neutral variation to answer 
demographic questions (e.g. population size, inbreeding, connectivity). However, the need to 
conserve and monitor adaptive or maladaptive genetic diversity is increasingly emphasised 
(Hoelzel et al. 2019; Mable 2019; Teixeira & Huber 2021). Adaptive variation refers to the 
genetic basis of phenotypic variation, i.e. traits that influence survival and reproductive 
fitness of individuals. Maladaptive variation refers specifically to genetic variation that 
reduces survival and/or reproductive fitness of individuals. While efforts have been made 
to characterise adaptive variation in model organisms, the broad application of these 
methods for species of conservation concern remains limited by challenges including small 
sample sizes inherent to threatened populations, limited availability of genomic resources 
(i.e. reference genomes and annotations) for non-model species, and the complexities of 
polygenic traits, i.e. those determined by combinations of multiple loci (Fig. 6 but also see 
Batley et al. 2019; Brandies et al. 2020).

For example, SVs (see 3.2 Chromosomics and structural variants) are increasingly recognised 
as a pervasive source of adaptive and maladaptive variation in threatened species (e.g. Wold 
et al. 2021). Despite their significance, SVs remain poorly understood and characterised 
for most species of conservation concern (but see Cayuela et al. 2021). Even as the field of 
chromosomics develops, however, the resources needed to reliably characterise adaptive 
or maladaptive SVs – including cytogenetic and long-read sequence data, well-characterised 
measures of fitness and selection pressures and a high-quality, annotated reference genome – 
are likely to remain challenging to produce for many threatened species.

In the face of such challenges, we prefer to avoid overpromising on the role of adaptive 
variation in conservation management in the near future. However, we are optimistic that 
creative approaches to leveraging available resources (e.g. Cayuela et al. 2020; Dorant 
et al. 2020; Huang et al. 2020a) will enable researchers and practitioners to make informed 
decisions for enhancing genome-wide diversity, which necessarily includes present, and/or 
future, adaptive variation. In some cases, these may include management actions that target 
putatively adaptive or maladaptive variation. 
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Figure 6.   Reproduced from Parker et al. (2022, preprint): a framework for assessing key criteria for characterising 
adaptive variation in threatened species, including whether (i) populations are sufficiently large and genetically diverse 
to differentiate between selection and genetic drift; (ii) differential selection pressures are well characterised; (iii) fitness 
measures – or suitable proxies – are well characterised; (iv) a high-quality reference genome is available; (v) population 
genomic data adequately captures genome-wide diversity; (vi) comprehensive sampling is representative of relevant 
locally adapted populations. The further each coloured section extends toward the dark green circle reflects how well 
that criterion is met. Overall image design after Suding et al. (2015).

For example, in a primary production context – where specific traits are targeted in breeding 
programmes – pedigrees are used to inform trait mapping approaches to identify quantitative 
trait loci (QTLs), or genomic regions associated with specific phenotypic traits. Analytical 
advancements now facilitate statistical tests to characterise such loci (e.g. genome-wide 
association studies (GWAS); Mable 2019). Such pedigree-informed approaches, combined 
with comprehensive long-term datasets capturing fitness-related traits, can be used to inform 
conservation management (Galla et al. 2022), including the identification of populations 
that have inadvertently become selected to captivity (Grueber et al. 2017). In the future, 
these approaches could be extended to include selective breeding, but extensive scholarship 
around social license, ethical and cultural perspectives is needed before moving into 
practical considerations. Further, a mechanistic understanding of how genetic diversity 
influences phenotype generally requires ‘omics’ data to understand how DNA methylation, 
gene expression and protein composition influence phenotype (Mable 2019). However, for 
the purposes of understanding the response of species of conservation concern to specific 
challenges (e.g. climate, disease), a statistical association between genetic and phenotypic 
evidence may be sufficient to guide management decisions (e.g. reintroduction of disease-
resistant individuals to areas where disease has previously extirpated the species; Epstein et al. 
2016; Hubert et al. 2018).
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3.4 Hologenomics
An extension of microbiomics relevant to conservation biology is hologenomics (Carthey et al. 
2020). As evolution acts on both the host organism and its microbiome (the combined 
assemblage of which is termed the ‘holobiont’), this causes changes in the ‘hologenome’, 
or genomic content of the entire holobiont (Morris 2018). Thus, hologenomics goes 
beyond analysing genome and microbiome data separately (Rosenberg & Zilber-Rosenberg 
2018). Greater variation within the hologenome allows species to more rapidly adapt to 
local environments than can be achieved through genomic changes alone (Rosenberg & 
Zilber-Rosenberg 2018). Hologenomics could allow conservation-relevant issues such as 
disease susceptibility/resistance (Postler & Ghosh 2017) and population sizes/connectivity 
(Wirth et al. 2005) to be assessed more broadly, and with greater resolution than investigating 
either the host genome or microbiome alone. While the substantial analytical challenges of 
this approach have thus far limited research to model species (Snijders et al. 2017), techniques 
derived from eDNA sampling could be used to understand interactions between the host 
and the environment, along with the ‘microbial appropriateness’ of environments at potential 
translocation sites (Koskella & Bergelson 2020). Similarly, metatranscriptomics approaches 
can be used to characterise gene regulation of the microbiome community and its potential 
application to host health and local adaptation (Knight et al. 2018).

3.5 Genome editing
Genome editing is the modification of an organism’s DNA by adding, removing or otherwise 
altering genetic material to produce targeted effects (Jinek et al. 2012; Mali et al. 2013). 
The development of the CRISPR-Cas9 genome engineering system is particularly relevant 
to conservation, as it provides a rapid, accurate and efficient method for producing such 
targeted changes (Doudna & Charpentier 2014). The primary biologically-feasible conservation 
application of genome editing in Aotearoa New Zealand is for pest control (Campbell et al. 
2015a; Dearden et al. 2018). While this application represents a departure from that of other 
tools reviewed here that are implemented in a species conservation manner, we include 
genome editing, as its use in pest control is both topical and, if implemented successfully, 
would shift the focus of conservation actions in Aotearoa New Zealand. 

Invasive species management currently employs direct culling, trapping and poisoning. 
Ecological variation, off-target impacts and ethical concerns create challenges for existing 
invasive species management strategies and have prompted research into alternative pest 
control solutions (Russell 2014; Latham et al. 2015; Kirk et al. 2020; MacDonald et al. 2020). 
Gene drives present one such method of non-lethal pest control, utilising the CRISPR-Cas9 
genome editing system to target pest fertility (Esvelt et al. 2014). Gene drives alter inheritance 
mechanisms so that all offspring inherit the gene drive, ‘driving’ the technology through the 
target pest population (Fig. 7). Gene drives can be used to disrupt the fertility of one sex, 
while the other sex continues to propagate the gene drive to subsequent generations 
by reproducing with wild, non-gene drive individuals (Prowse et al. 2017). 
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Figure 7.   Comparison of (A) a typical inheritance pattern of an edited gene (blue rat) with (B) the enhanced inheritance 
pattern of an edited gene created by the gene drive, whereby all offspring inherit the edited gene. Harnessing the 
enhanced inheritance pattern, gene drives can be used to spread genes that bias offspring sex or reduce fertility to 
achieve targeted long-term pest control objectives. Credit: AC, created with BioRender.com.

Gene drive technology is of significant international interest for potential eradication 
applications (Hammond et al. 2016; Hammond & Galizi 2017). Beyond eradication, gene drives 
have been proposed as a tool for engineering thermal tolerance to mitigate the widespread 
ecological impacts of climate change (Anthony et al. 2017). Other proposed conservation 
applications of genome editing include engineering the genomes of endangered species to 
build novel resistance to emerging pathological and environmental threats, or to restore lost 
genomic variation (Phelps et al. 2020). Its use for de-extinction (the resurrection of extinct 
species using exact replicas, or through incorporation of lost phenotypic traits to create 
functional proxies of such species; Seddon et al. 2014; IUCN/SSC 2016) of keystone historical 
species has also been proposed. However, substantial technical advancements are still 
required, along with careful consideration of potential benefits (e.g. biodiversity gain) against 
the risks (e.g. redirection of funding away from existing threatened species conservation 
programmes; Bennett et al. 2017; see 3.6 Biobanking for further discussion). Any project 
aiming to restore genomic diversity through genome editing techniques will require accurate 
characterisation of the extent of diversity lost (with challenges relating to the age and potential 
degradation of samples), its potential adaptive or maladaptive impacts and precise genomic 
location, and substantial experimental work prior to any in situ conservation application 
(Phelps et al. 2020).  

Technical challenges associated with genome editing for conservation applications include the 
complexity of gene function and local adaptation processes, particularly in wild populations 
(Kardos & Shafer 2018). High-quality annotated reference genomes are essential for accurate 
and rigorous characterisation of target genes and to develop a comprehensive understanding 
of phenotypic expressions of genotypes in various genetic backgrounds (Johnson et al. 
2016). Further, laboratory and field trials must be carefully designed to be representative of 
real-world impacts and ecosystem settings, as there may be differences in implementation and 
effects between captive laboratory populations and wild populations due to local behavioural 
adaptation, gene-environment interactions (e.g. epigenetic variation; Kardos & Shafer 2018) or 
other indirect ecological effects (Tompkins & Veltman 2006; Russell et al. 2009; Mazza et al. 
2020). These data can then inform predictive models assessing the efficacy of a genome editing 
application in target populations under variable conditions (including environmental change 
and conservation management; Champer et al. 2021).

In addition, social science research is required to assess social perspectives on genome editing, 
particularly those underpinning Indigenous values (Hudson et al. 2019; Palmer et al. 2020; Palmer 
et al. 2021). Such considerations are crucial, as the fundamental impacts of genome editing 
concern inheritance, therefore strongly implicating whakapapa, and genome editing may have 
implications for the mauri of the species. For example, kiore (Pacific rat, Rattus exulans) is an 
introduced species that is considered taonga (McClelland 2002). Furthermore, invasive species or 
conservation management has direct relevance to mana whenua as kaitiaki (guardians) of taonga 
species that may benefit from these measures. Iterative engagement regarding the potential 

http://BioRender.com
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uses of genome editing technologies, both for pest control and to enhance biodiversity, will be 
required to encompass the broad range of values and perspectives (Hudson et al. 2019). 

Alongside the technical and social challenges, legislative challenges have been exacerbated 
by rapid technological advances (Royal Society Te Apārangi 2019). The current legal definition 
of genome editing in Aotearoa New Zealand limits the potential for research and funding. 
Consequently, data evaluated in an international context may be misinterpreted in the absence 
of local knowledge and may not adequately capture mana whenua values in data use and 
applications. Despite real-world application of genome editing technologies in Aotearoa 
New Zealand being unlikely in the near future, the technology is advancing rapidly and 
rigorous transdisciplinary evaluation to integrate local social and cultural values is required if 
this tool is to support ambitious projects such as Predator Free 2050 in Aotearoa New Zealand.  

3.6 Biobanking
Biobanking (also known as cryopreservation) is a method used to preserve DNA, gametes, 
embryos, somatic cells, blood or tissue samples for assisted reproduction (Leon-Quinto et al. 
2009; for plants this typically involves seed banking; O’Donnell & Sharrock 2017; Walters & 
Pence 2020; but also see Wyse et al. 2018). Biobanks are routinely used in assisted reproduction 
for agricultural breeding programmes, and can act as repositories of samples for future 
genetic/genomic research. They have been touted for their potential conservation application 
as, combined with genome editing or cloning techniques, samples stored in biobanks could 
be used to enhance genetic diversity of remnant populations to increase population sizes or to 
resurrect extinct species (Strand et al. 2020). Biobanked samples were recently used to produce 
a clone of a deceased black-footed ferret (Mustela nigripes) with the goal of reintroducing lost 
genetic diversity into this endangered species (https://reviverestore.org/projects/black-footed-
ferret/; see Sandler et al. 2021 for discussion relating to the associated ethical considerations). 

Various biobanks exist overseas (e.g. the San Diego Frozen Zoo® https://science.
sandiegozoo.org/resources/frozen-zoo; the Frozen Ark https://www.frozenark.org/; CryoArks 
https://www.cryoarks.org/), and a local project, Tāpui Aotearoa (https://www.nextfoundation.
org.nz/investment/tapui-aotearoa/) aims to initiate discussion around potential establishment 
of a biobank for endemic fauna in Aotearoa New Zealand. We foresee that with applications 
similar to those of genome editing and a focus on threatened taonga species, such discussions 
must emphasise data sovereignty and accurate collection and storage of metadata alongside 
biobanked materials to adequately capture local contexts, knowledge and protect mana whenua 
interests (see sections 1.4.2 Metadata collection and management and 1.4.3 Data sovereignty).  

Advancements in cryopreservation techniques and expansion of biobanking facilities may 
promote de-extinction or other cloning-based techniques aimed at increasing population 
size. There has been extensive discourse around potential risks, benefits, and conservation 
relevance of de-extinction (Bennett et al. 2017; Iacona et al. 2017; Sandler 2017; Valdez et al. 
2019; Genovesi & Simberloff 2020), including scholarship specific to the Aotearoa New Zealand 
context (Taylor et al. 2017b) and from a conservation genetics perspective (Steeves et al. 2017). 
Even if the goals associated with Predator Free 2050 are achieved and sufficiently large areas 
of high-quality habitat were to become available to support the resurrection of a species, 
many of the ethical, legal, financial and technical challenges associated with genome editing 
remain applicable to both de-extinction and cloning more broadly. While we consider any 
such applications to be in the distant future in Aotearoa New Zealand, associated research 
developments overseas may contribute to conservation of extant species.   

https://reviverestore.org/projects/black-footed-ferret/
https://reviverestore.org/projects/black-footed-ferret/
https://science.sandiegozoo.org/resources/frozen-zoo
https://science.sandiegozoo.org/resources/frozen-zoo
https://www.frozenark.org/
https://www.cryoarks.org/
https://www.nextfoundation.org.nz/investment/tapui-aotearoa/
https://www.nextfoundation.org.nz/investment/tapui-aotearoa/
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3.7 Multi-species genomic pipelines
The global disconnect between conservation research and practice is widely recognised 
(also known as the research-implementation gap; Jarvis et al. 2020; Kadykalo et al. 2021). 
We envision an increasingly collaborative interface, where researchers and practitioners 
co-develop targeted research to inform conservation management actions (e.g. Tasmanian 
devil conservation, Hogg et al. 2017; conservation efforts for a range of threatened birds 
in Aotearoa New Zealand, Galla et al. 2022). Establishment of broad-scale genomic data 
generation and analysis pipelines may represent one pathway to enhance such collaborations. 
These initiatives are established to build repositories of genomic data/resources for multiple 
threatened species management programmes, provide analysis tools for use by researchers and 
practitioners and result in the accelerated implementation of genomics-informed conservation 
management actions across multiple species/ecosystems simultaneously. For example, the 
Australian Threatened Species Initiative (TSI) was initiated to support conservation decision 
making by establishing a national repository of genomic data accessible via an online web 
tool for analysis (Hogg et al. 2022), while the California Conservation Genomics Project 
(CCGP) was designed as a state-wide multi-species landscape genomics project to facilitate 
conservation prioritisation across California (Shaffer et al. 2022). In Aotearoa New Zealand, 
independent analysis pipelines are becoming available (e.g. those of Genomics for Aotearoa 
New Zealand (GFANZ), https://genomics.nz/page/bioinformatics-platform and AgResearch, 
https://www.agresearch.co.nz/doing-business/products-and-services/bioinformatics/). 

However, there are various limitations associated with the development and implementation 
of such pipelines in Aotearoa New Zealand. Despite the high proportion of threatened species 
in Aotearoa New Zealand (Bradshaw et al. 2010) there are relatively few threatened species 
management programmes, and so the application of a large-scale multi-species pipeline for 
conservation is somewhat limited. Development and optimisation of a pipeline similar to the 
TSI or CCGP would require substantial resourcing (e.g. US$12 million funding across projects 
involving 235 species for the CCGP, AUS$1.4 million funding for projects involving 61 species 
for the TSI; Hogg et. al 2022; Shaffer et al. 2022). Multi-species pipelines require standardised 
data inputs to facilitate robust, comparable analysis (e.g. sequencing types and depth for 
assembling reference genomes and for population-level resequencing, and reference genome 
assembly methods and quality; see 2.4.1 Reference genomes, 2.3 Reduced-representation 
sequencing, 2.4.2 Population-level resequencing, and the technical standards described in 
Shaffer et al. 2022), which may limit the re-use of existing genomic resources. Data sovereignty 
concerns will need to be addressed to determine the accessibility of any such data, particularly 
as the computational scale and data storage requirements for multi-species analyses may grow 
to exceed those available via existing platforms in Aotearoa New Zealand (e.g. NeSI, Catalyst 
Cloud). There is also the potential for data to become divorced from the local context, so early 
stages of pipeline development must emphasise the need for collecting and using metadata to 
support interrogation of input data and accurate interpretation of results. To maximise pipeline 
efficiency, analyses are likely to be limited to characterisation of genome-wide diversity and 
population structure as opposed to assessment of high-complexity adaptive variation or SVs 
with associated impacts on population fitness (e.g. Hogg et. al 2022; Shaffer et al. 2022; also 
see 3.2 Chromosomics and structural variants). Even within primary industry, where species 
biology is well-understood and genomic resources are well-characterised, few broad-scale 
pipelines exist (but see research across Eucalyptus spp., Silva-Junior et al. 2015).

While the TSI aims to produce an online tool to empower conservation practitioners to analyse 
genomic data as needed, we recognise that practitioners are already time-poor (Taylor et al. 
2017). While we do not presume to speak for all practitioners, many of whom may be interested 
in broadening their skills and having greater hands-on input in the genomics space, this may 
not be widely practicable/feasible. If such a pipeline were to be developed for conservation 
in Aotearoa New Zealand, ensuring co-development by researchers and practitioners to best 

https://genomics.nz/page/bioinformatics-platform
https://www.agresearch.co.nz/doing-business/products-and-services/bioinformatics/
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meet the needs and capabilities of both parties could fall under the purview of a conservation 
genetics/genomics advisory group (see 3.8 Improved facilitation of genetics/genomics research 
to enhance conservation outcomes). 

3.8 Improved facilitation of genetics/genomics research to 
enhance conservation outcomes
For the genetics/genomics toolbox to effectively inform conservation management decisions, 
particularly in light of rapid technological developments, we advocate for a well-resourced 
DOC genetics/genomics advisory group. This group should comprise both internal and 
external practitioners and researchers, across a range of career stages, and include members 
of, or exist in partnership with, Kahui Kaupapa Atawhai. Such a group should centre the 
principles of Te Tiriti o Waitangi to facilitate the establishment of genetic/genomic research 
by advising on the most appropriate research strategies to meet conservation needs, while 
balancing current and future uses of samples and data against feasibility and costs. This group 
could also be tasked with developing data management guidelines encompassing sample 
collection and curation, management of data and metadata to support downstream research, 
and facilitating collaborations with institutes with the necessary skill, experience and 
resources to implement specific research. Further, the establishment of such a group may 
facilitate connections among practitioners, researchers, local mana whenua and species-
specific research and conservation recovery groups to enhance conservation outcomes 
across Aotearoa New Zealand. However, we stress that researchers and practitioners must 
be proactive in establishing and maintaining trusted relationships, which may then lead 
to larger and/or long-term collaborative research projects. As predominantly early career 
researchers, we argue that senior researchers are best placed to maintain a clear and consistent 
line of communication between practitioners, mana whenua and their own research groups. 
In addition to better facilitating the permitting process, doing so will create the opportunities 
for early career researchers to gain an understanding of research best-practice within the 
limited time frames available to them (e.g. three years of funding for a PhD).

Related to this, a major concern identified by early career researchers and worth highlighting 
here relates to DOC’s research permitting processes which are subject to lengthy delays and 
inconsistencies among taxa, type of data generated and messaging around data management. 
With samples and data persisting beyond the timeframes of permits, and the increasing inter-
generationality of research projects, further concerns arise from the absence of periodic reviews 
once permits are granted. Addressing potential solutions to these issues is beyond the scope 
of this report, but could fall under the mandate of a DOC genetics/genomics advisory group.

Given these challenges and opportunities, we foresee conservation genetic/genomic research 
becoming increasingly transdisciplinary in nature. Indeed, to achieve the vision outlined 
in Te Mana o te Taiao, both species-specific and ecosystem-based approaches will need 
to include genetic/genomic, microbial, ecological, physiological and environmental data, 
alongside mātauranga Māori where mana whenua wish to contribute this. Thus, to produce 
more ‘winners’ – including species, ecosystems, and people – benefitting from conservation 
actions (Nelson et al. 2019), we encourage researchers and practitioners to focus on developing 
collaborative and iterative communicative practices that incorporate a wide array of disciplines 
and perspectives.
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4. Glossary
3C sequencing Chromosome conformation capture techniques such as Hi-C, 

Omni-C and Pore-C used to characterise the spatial structure of 
DNA to identify genomic interactions.

adaptive potential The ability of a population to adapt to immediate environmental 
change, typically estimated by the extent of genomic diversity 
present and quantified by relative reproductive fitness. Contributes 
to overall evolutionary potential, which refers to a species’ capacity 
to respond to environmental change through time.

adaptive (maladaptive) 
variation

Genomic variation that results in phenotypic variation and has 
some effect on individual fitness.

ancient DNA (aDNA) DNA extracted from historical museum skins, subfossils or fossils.

base pairs (bp) Individual nucleotides that code the DNA.

chromosomics A discipline that integrates cytogenetics and whole-genome 
sequencing to study chromosome-level diversity.

coverage Can have two distinct meanings: 1) when used in a reference 
genome context, it can relate to the proportion of the genome 
represented by the reference; and 2) when used in a population-
level sequencing context, it refers to the amount of sequencing 
depth supporting a variant call.

cytogenetics The study of the form and structure of DNA within the nucleus 
of a cell.

depth The number of times the genome is sequenced.

environmental DNA 
(eDNA)

DNA extracted from environmental samples such as water, 
soil or air.

Gb Gigabase pairs; one billion base pairs of DNA.

genetic data Data representative of a subset of the genome, typically 
comprising tens of loci.

genetic drift The fluctuation in allele frequencies between generations due 
to stochastic processes. 

genome The full complement of DNA characterising an individual.

genomic data Data representative of the genome, comprising hundreds to 
millions of loci. These data are generated with high-throughput 
sequencing techniques.

genome graph Graph structure used to represent genomic variation detected 
among multiple individuals simultaneously. 

hologenomics The study of the genomic interactions between a host organism 
and its microbiome.

iterative engagement A process of continuous or sequential discussions between 
parties throughout the research process from initial planning 
through to final public dissemination of results. For examples of 
such approaches, see Cisternas et al. 2019; Rayne et al. 2022.
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long-read sequencing DNA sequencing using platforms such as Oxford Nanopore 
Technologies or PacBio SMRT that can produce sequence reads 
in excess of 10,000 bp in length.

microarray A genomic method used to genotype large numbers of loci at 
population-scale, simultaneously.

microbiome The microorganisms that reside on and/or within the tissues of 
a host species, including bacteria, fungi and viruses.

mitochondrial DNA 
(mtDNA)

The DNA specific to the mitochondrial organelle, with a short 
circular structure and high copy number within an individual cell.

neutral variation Genomic variation that does not impact fitness. Also known as 
neutral diversity.

pangenome(s) Multiple high-quality genome assemblies that capture all of the 
genomic diversity within a species. Pangenomes may eventually 
supersede single individual genomes for reference purposes.

restriction-site associated 
DNA sequencing (RAD-seq)

A method using restriction enzymes to target subsets of loci 
throughout the genomes of all sequenced individuals.

reduced-representation 
sequencing (RRS)

Sequencing methods such as restriction-site associated methods 
(RAD-seq, ddRAD-seq, GBS), where a reduced subset of the 
genome is sequenced and assumed to be representative of the 
diversity throughout the complete genome.

reference genome(s) A representation of the genome of a species that can be used 
alone for interspecific comparisons or as a reference against 
which population-level resequencing or RRS data can be aligned 
for intraspecific comparisons.

reproductive fitness Capacity of individuals in a population to propagate their genes 
to subsequent generations. Quantified through estimates of 
relative fertility and mortality. 

short-read sequencing DNA sequencing conducted using platforms such as Illumina 
MiSeq, HiSeq and NovaSeq that produce short (< 500 bp) 
sequence reads.

single-nucleotide 
polymorphisms (SNPs)

The most common form of variation in the genome. SNPs 
have low mutation rates and are often biallelic, with known 
characteristics making analysis relatively straightforward.

SNP-chip A type of genomic microarray used to generate single-
nucleotide polymorphism data for large numbers of individuals 
within a species.

structural variants (SVs) A diverse class of genomic variation impacting the form 
and structure of chromosomes. Common types of structural 
variants include copy number variants, deletions, duplications, 
insertions, inversions and translocations > 50 bp.

transcriptome The array of RNA transcripts that are expressed by an organism, 
determining individual phenotype.
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