Genetic diversity of Dactylantbus taylorii in New Zealand

SCIENCE \& RESEARCH INTERNAL REPORT 173
M.J. Faville, A.S. Holzapfel and C.E.C. Gemmill

Science \& Research Internal Reports are written by DOC staff on matters which are on-going within the Department. They include reports on conferences, workshops, and study tours, and also work in progress. Internal Reports are not normally subject to peer review.

This publication originated from work done under Department of Conservation contract 2469 carried out by M.J. Faville, Crop \& Food Research Ltd, Private Bag 11-600, Palmerston North, A.S. Holzapfel, Waikato Conservancy, Department of Conservation, Private Bag 3072, Hamilton, and C.E.C. Gemmill, Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton.
© March 2000, Department of Conservation

ISSN 0114-2798
ISBN 0-478-21868-0

Cataloguing-in-Publication data
Faville, M. J.
Genetic diversity of Dactylanthus taylorii in New Zealand / M.J.
Faville, A.S. Holzapfel and C.E.C. Gemmill. Wellington, N.Z. : Dept. of Conservation, 2000.
$1 \mathrm{v} . ; 30 \mathrm{~cm}$. (Science and Research internal report, 0114-2798 ; 173)

Includes bibliographical references.
ISBN 0478218680

1. Dactylanthus taylorii. I. Holzapfel, A.S. II. Gemmill, C. E. C.
III. Title. Series: Science and Research internal report ; 173.

CONTENTS

Abstract 5

1. Introduction 5
1.1 Background 5
1.2 Randomly amplified polymorphic DNA markers 6
2. Materials and methods 7
2.1 Plant material 7
2.2 DNA extraction and polymerase chain reaction 7
2.3 Analysis of genetic variability 8
3. Results 8
4. Discussion 11
5. Acknowledgments 12
6. References 12
Appendix 1. Details of methodology 13
Appendix 2. RAPD data for Dactylanthus taylorii populations 15

Abstract

Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amongst 17 populations (146 individuals) of the endangered parasitic plant Dactylanthus taylorii. The objective was to provide a means of identifying a set of populations that are representative of the full range of genetic diversity within the species, towards which conservation resources might be targeted. RAPDs produced clear, reproducible bands, and 84 polymorphic marker bands were identified. Analysis of the RAPD data, based on Nei's genetic distance, produced a dendrogram that grouped all individuals (bar one) into their expected populations. A similar analysis at the population level showed the grouping of populations was, to a significant extent, determined by geographical distribution. Two major clusters were evident, one containing populations close to and east of Lake Taupo, and the second consisting mainly of populations west of Lake Taupo. Little Barrier Island, the most isolated population, occupied a discrete branch within the second cluster. Further geographical ordering was evident within the major clusters, with neighbouring populations being grouped together. The populations at Little Barrier Island, Pirongia, Mamaku, and Waitaanga Forest were identified as being the most genetically distinct at the national level, and it is recommended that these are targeted for management. Overall, genetic groupings did not reflect conservancy boundaries. For this reason it is also recommended that conservancy management decisions regarding the allocation of resources to populations, or withdrawal thereof, should take into account the genetic status of those populations at the national level.

1. Introduction

1.1 B A C K G R O U N D

Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, fully parasitic plant, and an ancient member of the New Zealand flora. The plant consists of a round, warty tuber of up to 50 cm diameter which attaches as a parasite to the root of a host tree or shrub (Ecroyd 1996). The tuber exists predominantly underground, with usually only the inflorescences of the plant exposed at the surface.

Isolated, often small (<20 tubers) populations of D. taylorii are scattered over a large area of the North Island. These populations are threatened, primarily, by the browsing of inflorescences by possums and rats (Ecroyd 1996). Dactylanthus taylorii is classified as an endangered species of national importance (Molloy \& Davis 1994) and all North Island Department of Conservation (DOC) Conservancies (Northland and Wellington excepted) are
involved in managing populations. Management consists of both the caging of individual tubers and the use of poisoning, to prevent browsing (Ecroyd 1995).

A principal aim in the conservation of any endangered species is to preserve as much of its genetic diversity as possible. Where populations are widespread and scattered, as is the case for D. taylorii, the most financially and logistically realistic means of doing this is to concentrate efforts upon key populations that represent a maximum proportion of the species' genetic diversity (Maxted et al. 1997; Petit et al. 1998). However, in the absence of information on the genetic distinctness of D. taylorii populations, management efforts are currently spread over all populations. Significant resources have been committed to these efforts, especially in conservancies managing several small, scattered populations or a few, very large ones (Anon. 1995; Anon 1996).

The primary objective of this study was to obtain information about genetic variation amongst populations of D. taylorii, so that DOC resources, at both the conservancy and national level, might be targeted towards populations which best represent the overall genetic diversity of the species.

1.2 RANDOMLY AMPLIFIED POLYMORPHIC DNA MARKERS

Holzapfel (in press) carried out a preliminary investigation of genetic variation in D. taylorii, using randomly amplified polymorphic DNA markers (RAPDs). Based upon the success of that work, the current study also utilised RAPDs.

RAPDs form a DNA marker technique (Williams et al. 1990) which utilises the polymerase chain reaction (PCR). PCR allows the amplification of specific DNA sequences within a genome. Using this methodology, short DNA molecules (primers) are placed in a reaction mix with genomic DNA, and bind to sequence(s) within that DNA which are complementary to their own. If the two primer molecules bind within a distance of 2 kilobase pairs of one another, then the intervening sequence will be amplified (Hoelzel \& Green 1998).

RAPDs utilise only a single primer per reaction. Because the primer is not designed to recognise one specific sequence, it may bind at multiple, unknown positions within the genome. Therefore RAPDs usually produce a number of DNA fragments of varying sizes, from each DNA sample being compared. The fragments are separated according to size on an agarose gel and then stained, resulting in a characteristic banding pattern for each individual sample. Bands which vary in terms of presence or absence across all samples (polymorphic bands) are identified as markers. The similarity of samples is then computed from the presence or absence of each marker in each sample.

2. Materials and methods

2.1 PLANT MATERIAL

Inflorescences were collected as buds, prior to or at the beginning of flowering, from populations at 17 North Island localities (Table 1, Figure 1) during 1998. The exception to this was the Mamaku population, for which samples collected in 1996 were used. Note that Tarawera Plot includes only a single sample, and the Egmont National Park population comprised individuals from six subpopulations. A peduncle section immediately below the inflorescence head was cleaned and excised as a block, then frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ until DNA extraction could be performed. A reference collection of all samples is held by A.S. Holzapfel (DOC, Waikato Conservancy).

TABLE 1. LOCATION OF Dactylanthus taylorii POPULATIONS AND NUMBER OF INDIVIDUALS SAMPLED FOR GENETIC ANALYSIS.

LOCALITY	CONSERVANCY	NO. SAMPLED
Little Barrier Island	Auckland	10
Pirongia	Waikato	10
Pureora	Waikato	10
Paeroa Range	Bay of Plenty	10
Minginui	Bay of Plenty	10
Mamaku	Bay of Plenty	9
Opepe	Tongariro/Taupo	8
Whakaipo	Tongariro/Taupo	10
South Pihanga	Tongariro/Taupo	6
Ohakune	Tongariro/Taupo	4
Tarawera Plot	East Coast/Hawke's Bay	1
Te Araroa	East Coast/Hawke's Bay	10
Waikaremoana	East Coast/Hawke's Bay	10
Hawke's Bay	East Coast/Hawke's Bay	9
Waitanga Forest	Wanganui	3
Egmont National Park	Wanganui	19
Mangaweka	Wanganui	7
Total		146

Figure 1. Map of the North Island of New Zealand, showing the location of the Dactylanthus taylorii populations used in the study and Conservancy boundaries (NOR Northland, AK Auckland, WAI Waikato, BP Bay of Plenty, EC/HB East Coast/Hawke's Bay, T/T Tongariro/Taupo, WNG Wanganui, WGT Wellington)

2.2 DNA EXTRACTION AND POLYMERASE CHAIN REACTION

DNA was extracted from c. 0.1 g of frozen tissue, using the CTAB method of Doyle \& Doyle (1990), with some modifications (Appendix I). DNA quantity and quality were assessed using a spectrophotometer (Genequant, Pharmacia, USA).

DNA from all 146 individuals was amplified by PCR, using each of five different synthetic oligonucleotide primers (Operon Technologies, Inc., USA):

```
Primer Sequence
OP-P02 5'-TCGGCACGCA-3'
OP-P10 5'-TCCCGCCTAC-3'
OP-P11 5'-AACGCGTCGG-3'
OP-P16 5'-CCAAGCTGCC-3'
OP-A20 5'-GTTGCGATCC-3'
```

PCR conditions are given in Appendix 1. Reproducibility between PCR runs was assessed by including a positive control sample with each set of reactions, and also by repeating PCR for selected individuals at a later date, for each primer used.

RAPD products were separated on a 1.5% Tris-borate-EDTA (TBE) agarose gel, and stained with ethidium bromide. For each primer, polymorphic bands were identified across all samples. Each individual was then scored for the presence or absence of each band, with $1=$ present, $0=$ absent and $?=$ missing data .

2.3 ANALYSIS OF GENETIC VARIABILITY

Using the population genetics analysis freeware POPGENE v.1.31 (Yeh et al. 1997), a UPGMA cluster analysis was performed on the data, based on Nei's genetic distance (Nei 1972). The higher the value of the genetic distance between samples, the more genetically distinct they are. Dendrograms were produced showing the relationships between all individuals, as well as between each population. Separate analyses were also made for populations at the conservancy level.

3. Results

The RAPDs method used resulted in clear, reproducible bands. Using the five primers listed above, a total of 84 polymorphic bands were identified amongst the 17 populations:

OP-P02, 20; OP-P10, 14; OP-P11, 14; OP-P16, 15; OP-A20, 21.
A further seven bands were identified that were monomorphic, and these were excluded from analysis. Of the markers found, nine were specific to certain populations: two to Little Barrier Island, two to Pirongia, and one each to Whakaipo, South Pihanga, Pureora, Waitaanga Forest, and Ohakune. The remainder varied in their presence or absence amongst all populations.

Banding patterns were relatively uniform within populations and more variable between populations (Fig. 2). This was reflected in a UPGMA analysis at the level of the individuals. This grouped all individuals into their correct popu-

Figure 2. RAPD patterns of individuals from seven Dactylanthus taylorii populations, illustrating higher genetic variability between populations than within. Lanes 1-3 Little Barrier Island; lanes 4-6 Pirongia; lanes 7-9 Pureora; lanes 10-11 Waitaanga Forest; lanes 12-14 Egmont National Park; lanes 15-17 Opepe; lanes 18-20 Mamaku. The outside lanes contain 100 bp ladder (Life Technologies, USA).
lations (data not shown), with two exceptions. One Pureora sample, which had RAPD phenotypes that were unique amongst all sampled individuals, was placed on a branch outside of all other populations. It also lacked three marker bands that were otherwise monomorphic amongst the other samples (species markers). Based on the possibility that this DNA sample had been contaminated by an outside source of DNA, it was excluded from analysis at the population level. One Whakaipo individual was also grouped with individuals of the neighbouring Opepe population.

At the population level UPGMA analysis revealed groupings of populations that reflected to some extent their geographical distribution (Figs 1, 3). Two main clusters were evident. The first (uppermost in Fig. 3) consisted mainly of populations close to and/or east of Lake Taupo. The second major cluster mainly included populations located to the west of Lake Taupo, with the exception of Mamaku (Bay of Plenty). Within this cluster, Little Barrier Island, the most isolated population (Fig. 1), occupied a single, distinct branch, with the remaining populations clustering more closely. Within the major clusters, further geographical ordering was apparent. For example, neighbouring pairs of populations were often grouped together, e.g. Opepe and Whakaipo, Waikaremoana and Minginui, Hawke's Bay and Mangaweka. However, exceptions to this trend were also found, such as Pureora and Egmont NP, Paeroa Range and South Pihanga.

The population analysis showed that populations did not generally group naturally into conservancies on a genetic basis (Fig. 3) and UPGMA analyses of the populations within each conservancy corroborated this (Fig. 4). Populations that are both geographically close and within the same conservancy were closely grouped by the conservancy level analysis, but only the Opepe and Whakaipo populations fall into this category.

Figure 3. Dendrogram showing relationships between populations of Dactylanthus taylorii, based upon Nei's genetic distance (scale at bottom), produced by UPGMA cluster analysis. Conservancies are given in parentheses: T/T = Taupo/Tongariro, BP = Bay of Plenty, EC/HB = East Coast/Hawke's Bay, AK = Auckland, WAI = Waikato, and WNG = Wanganui.

Figure 4. Dendrogram showing relationships between populations of Dactylanthus taylorii within each conservancy, based upon Nei's genetic distance (scale at bottom). A. Waikato; B. Bay of Plenty; C. East Coast/Hawke's Bay; D. Taupo/ Tongariro; E. Wanganui. Note that the Auckland Conservancy contains only one population (Little Barrier Island), and is therefore not shown.

At the national level the Pureora and Pirongia populations occurred in different major clusters (Fig. 3), therefore within the Waikato Conservancy they are notably genetically distinct (Fig. 4A). Although the populations in the Bay of Plenty Conservancy (except Mamaku) occupied the same major cluster at national level, they were more similar to populations from other conservancies than each other (Fig. 3). Therefore, at the conservancy level these populations are genetically diverse (Fig. 4B). Similarly, genetic diversity amongst the widelyscattered populations of the East Coast/Hawke's Bay Conservancy is high (Fig. 4C). Although all four populations were within the same large cluster at national level, they were more closely associated with populations from other conservancies (Fig. 3). In the Taupo/Tongariro Conservancy the northern Lake Taupo populations, Opepe and Whakaipo, are genetically similar and both are also genetically close to the southern Lake Taupo population, South Pihanga (Fig. 4D). However, Ohakune occupied a different major cluster at national level and is significantly distinct from the other populations in this Conservancy. There is genetic dissimilarity amongst the populations of the Wanganui Conservancy (Fig. 4E). At national level, Mangaweka population occupied a different major cluster to Egmont National Park and Waitaanga Forest (Fig. 3) and the latter two are more closely associated with populations from other Conservancies. The Auckland Conservancy contains only the Little Barrier Island population.

4. Discussion

The purpose of this research was to investigate genetic variation amongst populations of D. taylorii, with the aim that populations that are genetically representative of the species as a whole might be identified. The RAPDs technique proved to be a successful means of achieving this, providing a set of 84 genetic markers from which a logical representation of the genetic similarity (measured as genetic distance) between populations was obtained. The information provided, primarily that in Fig. 3, is intended as a guide on which decisions regarding the targeting of certain key populations for management can be based.

We have shown that genetic similarity amongst populations of D. taylorii is influenced by their geographical distribution. Populations that are spatially close tend to be genetically similar whilst the more isolated populations are relatively distinct. The most genetically distinct populations identified at the national level are Little Barrier Island, the most isolated of the populations investigated, along with Pirongia, Mamaku, and Waitaanga Forest. As such, it is essential that these populations are amongst those targeted in any streamlined conservation strategy. The Tarawera Plot population was relatively dissimilar to others in its cluster, but it was represented only by a single plant and therefore its placement cannot be treated with certainty. The remaining populations grouped more closely in clusters of two or more, based largely upon their geographical association, and it is conceivable that, within these tighter
groupings, one or two representative populations could be selected for continued management, with the remainder to be excluded.

Decisions regarding the distribution of management resources to key D. taylorii populations will be made within each conservancy. The association between genetic similarity and geographical proximity has notable consequences at the level of the conservancy. Populations within each conservancy are generally widespread and, in some instances, their closest neighbour lies across a conservancy boundary (e.g. Minginui and Waikaremoana). The result of this is that populations do not group naturally into conservancies, upon a genetic basis, but tend to associate more closely with populations from other conservancies. It is therefore important that attention is not focused exclusively within the conservancy when selection of key populations is made, but that the national situation is also taken into account. By concentrating solely upon conserving the widest range of genetic diversity possible within the conservancy there is a risk that key populations at the national level could be excluded from management or, conversely, populations that constitute a less distinct population at the national level could be targeted for management efforts. This would lower the proportion of the species' overall genetic diversity that will receive management attention. Therefore, it is strongly recommended that management decisions made at the conservancy level should take into account the genetic status of each population at the national level.

5. Acknowledgements

We gratefully acknowledge the help received from staff at DOC who collected most of the samples and who provided details of the populations; Janet Oddy for assistance in the early stages of this study; Neil Fitzgerald for providing the Tarawera Plot sample; and the members of the Dactylantbus Recovery Group of DOC for their ongoing support of research into the genetic diversity of D. taylorii.

This study has been fully funded by the DOC Research Grant 2469.

6. References

[^0]Hoezel, A.R.; Green, A. 1998: PCR protocols and population analysis by direct DNA sequencing and PCR-based DNA fingerprinting. In: Hoelzel, A.R. (ed.) Molecular genetic analysis of populations. IRL Press, Oxford.

Holzapfel, A.S. 2000: Studies of the New Zealand root parasite Dactylanthus taylorii Hook. f (Balanophoraceae). Englera 21.

Molloy, J.; Davis, A. 1994: Setting priorities for the conservation of New Zealand's threatened plants and animals. Department of Conservation, Wellington.

Maxted, N.; Ford-Lloyd, B.V.; Hawkes, J.G. 1997: Plant genetic conservation. Chapman \& Hall, London.

Nei, M. 1972: Genetic distance between populations. American Naturalist 106: 283-292.
Petit, R.J.; El Mousadik, A.; Pons, O. 1998: Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12: 844-855.

Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. 1990: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535.

Yeh, F.C.; Yang, R.-C.; Boyle, T. 1997: POPGENE Version 1.21. URL http://www.ualberta.ca/ \sim fyeh.

Appendix 1. Details of methodology

DNA extraction

A block (c. $5 \mathrm{~mm}^{3}$) of inflorescence tissue was submerged in liquid nitrogen and ground to a fine powder using a mortar and pestle. A volume equivalent to $100 \mu \mathrm{~L}$ powder (c. 0.1 g) was transferred to a 1.5 mL microcentrifuge tube and $600 \mu \mathrm{~L}$ pre-warmed $\left(60^{\circ} \mathrm{C}\right)$ CTAB buffer ($2 \%(\mathrm{w} / \mathrm{v}) \mathrm{CTAB}, 1.4 \mathrm{M} \mathrm{NaCl}, 0.2 \%(\mathrm{w} / \mathrm{v})$ β-mercaptoethanol, 20 mM EDTA, 100 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$, 1% polyvinylpyrrolidine (MW 40000) and $30 \mu \mathrm{~L}$ proteinase $\mathrm{K}(1 \mathrm{mg} / \mathrm{mL})$ were added. After briefly vortexing, an additional $1 \mu \mathrm{~L} \beta$-mercaptoethanol was added, and the mixture incubated for at least 60 min at $60^{\circ} \mathrm{C}$.

To extract DNA, $800 \mu \mathrm{~L}$ of chloroform:isoamyl alcohol (24:1) was added to the tube, the suspension inverted several times to mix, and then centrifuged for 5 min at 13000 rpm in a microcentrifuge. The supernatant was removed to a new tube, the chloroform:isoamyl alcohol extraction repeated, and the supernatant was again transferred to a new tube. To precipitate DNA, $400 \mu \mathrm{~L}$ cold $\left(-20^{\circ} \mathrm{C}\right)$ isopropanol was added to the extract, the suspension inverted several times to mix, and then left at $-20^{\circ} \mathrm{C}$ for 90 min .

The DNA was pelleted by centrifuging at 13000 rpm for 15 min in a microcentrifuge. The supernatant was discharged and the DNA resuspended in $500 \mu \mathrm{~L}$ NaCl , at $37^{\circ} \mathrm{C}$. This suspension was centrifuged at 3000 rpm for 5 min to remove precipitated polysaccharides, and the supernatant removed to a fresh tube. This was then incubated at $95^{\circ} \mathrm{C}$ for 30 min .

The DNA was precipitated by adding $500 \mu \mathrm{~L}$ cold $\left(-20^{\circ} \mathrm{C}\right)$ isopropanol, inverting to mix, and incubating at $-20^{\circ} \mathrm{C}$ for 20 min . DNA was pelleted by centrifugation at 13000 rpm for 15 min in a microcentrifuge, and the supernatant
discharged. The pellet was washed briefly in $500 \mu \mathrm{~L} 70 \%$ ethanol, followed by centrifugation at 13000 rpm for 5 min in a microcentrifuge. The supernatant was discharged and the wash repeated with $500 \mu \mathrm{~L} 95 \%$ ethanol, followed by centrifugation.

The supernatant was removed and the pellet vacuum-dried before resuspension in $100 \mu \mathrm{~L}$ TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). $1 \mu \mathrm{~L}$ RNase ($1 \mathrm{mg} / \mathrm{mL}$) was added and the suspension incubated at $37^{\circ} \mathrm{C}$ for at least 60 min .

DNA samples were quantified using a low quantity spectrophotometer (Genequant, Pharmacia), and with the same device quality was assessed by the ratio of absorbances $260 \mathrm{~nm}: 280 \mathrm{~nm}$. Samples with a $260: 280$ value less than 1.7 , and those with a quantity less than $30 \mathrm{ng} d s \mathrm{DNA} / \mu \mathrm{L}$, were discarded and later re-extracted. For polymerase chain reaction (PCR), extracts were diluted to a working concentration of $6 \mathrm{ng} / \mu \mathrm{L}$.

PCR reaction mix and amplification conditions

A reaction volume of $25 \mu \mathrm{~L}$ was used, containing $1 \mu \mathrm{~L} 10 \mathrm{mM}$ dNTPs $(2.5 \mathrm{mM}$ each of dATP, dCTP, dGTP and dTTP) (Boehringer Mannheim), $4 \mu \mathrm{~L} 5 \mu \mathrm{M}$ primer (Operon Technologies Ltd.), $2.5 \mu \mathrm{~L} 10 \mathrm{x}$ PCR buffer containing $1.5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ (Boehringer Mannheim), $0.2 \mu \mathrm{~L}$ Taq DNA polymerase (5 units $/ \mu \mathrm{L}$) (Boehringer Mannheim), $4 \mu \mathrm{~L}$ template DNA ($6 \mathrm{ng} / \mu \mathrm{L}$) and $13.3 \mu \mathrm{~L}$ sterile distilled water. Thin-walled 0.2 mL PCR tubes were used for the PCR reactions.

PCR was carried out using a Mastercycler gradient thermocycler (Eppendorf, USA). This thermocycler utilises a heated lid, so mineral oil was not used. Amplification conditions were: initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min , followed by 34 cycles of denaturation at $94^{\circ} \mathrm{C}(1 \mathrm{~min})$, annealing at $46^{\circ} \mathrm{C}(1 \mathrm{~min})$ and elongation at $72^{\circ} \mathrm{C}(2 \mathrm{~min})$. An additional $72^{\circ} \mathrm{C}$ elongation step (10 min) completed the programme.

Appendix 2. RAPD data for Dactylanthus taylorii populations

Populations: $\mathrm{OP}=$ Opepe, $\mathrm{WH}=$ Whakaipo, $\mathrm{MIN}=$ Minginui, WK $=$ Waikaremoana, $\mathrm{PR}=$ Paeroa Range, $\mathrm{LBI}=$ Little Barrier Island, $\mathrm{SP}=\mathrm{South}$ Pihanga, $\mathrm{PUR}=\mathrm{Pureora}, \mathrm{OH}=$ Ohakune, WF = Waitaanga Forest, EG = Egmont National Park, TA = Te Araroa, PI = Pirongia, MAN = Mangaweka, MAM = Mamaku, HB = Hawke's Bay, TPT = Tarawera Plot

Population/ individual

OP-P16
OP-P10

Primer

010001000010100000001000000000110111001000001111101101101110110011101011000101000000 01000100001000000000100000000101101110110000 ? ? ? ? ? 1 0 ? ? 0111001? ? 100011101011100101000000 0100010000100000000010000000010110111111000110110100100101110110011101011100101000000 $0101010000100000000010000000010110111011000001110100100101110110011101011 ? 00101000000$
 01000100001000000000100000000 0111011100100012? ? ? 0100100101010110011101011100101000000 010101000010000 0 0000100000000 0110111011000110010100100101010110011101011100101000000 01000100001000000000100000000 01101110110001501110100100101010110011101011100001000000

01010100000011000000100000000 0111011101000001100?110101101110000011101011101101000000 010101000000110
 010001000000110 00000100000000 01101110100001111100110100101010000011101010101101000000 010101000000110 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1110100000 111100010101101010000011101001000001000000 $010101000000 ? ? 0100000100000000$ 011101110100001111100110101101010000011101011101001000000 010101000000 ? 10 0 00000100000000 0110111110000011111110101101110010011101010101101000000 $0100010000000 ? 0 \quad 00000100000000111101111000000111110100100101110110011101011101001000000$ 010001000000110 01010100000011000000100000000011011100000001111 ? 110100101110010011101011100101000000

MIN
$010001000001000011000100000101011010111000011111101001 ? 0111110000001101111101001000000$ 0100010 ? $0001000 \quad 01100010000010$ 0110101010000111110100110111110000001101011001001000000
 01000100000100001100010000010101101011100001111110000110100110000001101111101001000000 010001000001000 01100010000000 01101011110001111110000110111010000001101011001001000000 $010001010001000 \quad 0110001000001000 ? 101011100001111110000110100010000001101011101001000000$ $010001000001010 \quad 0110001000001000011010100001111110000110111110100001101011101001000000$ $0100010000010 ? 0 \quad 01101010000010$ 01101010100001111110000110111010000001101?11101001000000 $0101010000010 ? 0 \operatorname{0000101000001001101010100001111110000110111110000001101011101001000000}$

Population/

individual Primer
WK OP-P16 OP-P10 OP-P11 OP-A20 OP-P02
1010001000000000000001000000010110111111000011010000110111110000001101111001001100000 $2 \quad 0100010000000000000010000000102 ? 10111110000001010000110111110000001101011001001100000$ 010101000000000000001000000010010111110000111110000110111110000001101010101001100000 $010001000000000000001000000010010111110000111 ? 1000011011111000000110101010100 ? 100000$ 010001000000000000001000000010010111110000 ? ? ? ? ? 0000110111110010001101011101001100000 $01000 ? 000000000000001000000010010111010000 ? 11010000110111110000001101011001000100000$ 010001000000000000001000000010010111111000 ? 111110000110111110000001101110001001100000 01000000000000000001000000010000111111000 ? 11010000110111110000001001111101001100000 010000000000000000001000000010110111111000111110000100111110000001101011001001100000 01000 ? 000000000000001000000010010111110000111110000110111110000001101011001001100000

010001000000000000010000000000011001101000011110101101111110111011001011101001001000 $01010101000000000000000000000011010111100001111000010111101011 ? 011001010000000001000$ 010101010000000011000000000011110100101010011010101101111110111001001010000000001000 $010001010000000000000010000000110100 ? 11000001110000101111110111001001010000000001000$ 010001000000000011000010000001110100011000011010101100111010111001001010100000001000 010001000000000010110010000001110101101000001110001101111110101011001010100000011000 $0100010 ? 0000000110000010000001110101111000011010100100111010111001001010100000001000$ 010001010000000001000000000001110101111010011010100100111110101011001010100001001000 010001010000000010100010000001110101001000011110101101111010111011000010100000001000 010001000000000000000000000001110101001000011110000101111110111011000011000001001000

010100000000000000110100000011010111110100101011000101111110100000010101001001111100 010100000000000000110100000011110110110000101011000100111010100001110001101001101000 010100000000000000110100000011110110110000101010000101101110100001000001101001101000 $010100000000000010110110000010110111110000101010000101101000 ? 00001010001101001101010$ 01010000000000000110100000111010111110000101011000101111 ? 10110001000001100001101000 010100000000000000110100000111110111110000101010000101111100110001010001101001101000 010100000000000000110100000111110110110010101010000101101110010001010001101001101110 01010000000000000110100000111110110110000101011000101111110110001010001101001101010 010100000000000000110100000111110111110010101010000101111010100001000001101001101000 010100000000000001101000001111101101100101010100001011 ? 1010110001010001100001101010

Population/

Population
SP
 010101000000000000001000000010010111111000011000000100111110100011001011000001000000 010101000000000000000010000000010101101000011000000100111110100011001011000101001000 010001000000000000001000000110110011011000011000000100111110100011101011001001000000 010101000000000000001000000010010101101000011000000101111110111111001011000001000000 010101000000000000001000000010010101111000011110000101111110111111001011000001000000

PUR

$0101010000000000100001000010000110001000000110100010001111101010010011 ? 1001001100000$ 010001000101000010010100001000110100100000011010001100111110101001001011001001100000 010101000101000010010100001001110100110000011010001100111110101001001011101001100000 $0101010001000000000 ? 0100001000010110110000001010001100111010101001001101001001100000$ 01010100010000000001010000100001001010000000101000 ? 000001010101001001111101001100000 $0100000010 ? 0100000101010001000000000110000001000001101011101010011001101000101100000$ $0101010101000000000 ? 011000100001011011000000101000 ? 00011111010$? ? 01001011001001100000 010011010000000010000110000000010110110000011000001100001110101101001011001011100000 $010011000101000010000100000000110110100000011110001100111110101001001001001001 ? 00000$ 01010100000100001000010000000011010010000000100000110011111010 ? ? 01001001001001000000

0010000000000000100001 ? 0000000010110100000001011000001101010101001001011001001000000 001000000000000010000110000000010010100000001011000001110110101001001111001001000000 001000000000000010000110000000010011100000001011000001101110101001001111001001000000 001000000000000010000110000000010000100000001011000001101110101001001011001001000000

WF

1 010101000100001 00000010000000 00100011000000 010100000001010001000 00000011000001010000 01010 ? ? 00010001000000110010000110010100000001010000000101000100000001111000001010000
$010 ? 0$? ? 00000000 00001000000000 0010010111000011010000001101000100001001111000011010000 01010110011000100001011000000001001010000000101000000010100010000 ? 001011000001000000 $010101 ? 0000000 ? 000010100000000110010110000011010000000101000100001001011000011010000$ 010101000000000000000111000000010010100000001010000000111010100001001011000001010000 010000000011001000000110100000110000100000001010000000111010100001001011000001010000 010101000010000000000101010000010010111000001010000000001010100001001111000010110000 00000000001000100000011000000001000010000000100000010111111010000100 ? 011001001010000 01000100001000 ? 000000111100000010000100000001000000100111010100001001111000000110000 000100000010001000000110000000110010110000001000100000111110100001101011001001010000 $000100000010001000000110000000010010110000001000 ? 00100111$? 10100001001011000001010000 $000 ? 01001110001000000110000000110100100000011011000101111010100001001011000001010000$ 010100001110001000000110000000010000100000001011000001011000000001001111001001010000 $01010100 ? 1 ? 0000000000 ? ? 0000000010000110000011011000000111000000001001 ? 11000001010000$ 0101010011 ? 0000000000111010000110010100000001011000101101010100001001111000000010000
 $010001 ? 00000000000001000000000100001111100011101100010111111011000100101100100 ? 000000$

 $01010001000000000000100000000001101111100000101100010111111011000110101101000 ? 000000$
 010100010000000 00000100000000 0011010111000111101100010101111011000100101100100?000000
 010100010000000000001000000001001101011100011110110001010111101 ? 000110101100100 ? 000000
 $010101101000000010 ? 001010000000100011000000101011000100110001000001000001000000110000$
 010101101000000 01010010100000 0010101?0000001010110001001110010000101001001000000110001

 010101101000000010100100000000010101100101001011000100111001000001000001001000110000
 010100001000000 01010000000000 00101001000000 01011000100111001001001001001001000110000 $0101 ? 0001000000 \quad 0101000000000000101011000010101011000100110001001001001001001000110000$

Population/

individual

MAN

OP-P11

$010 ? ? ? 00 ? 000000000001000000000010011110100011111000101100100100001101101001001000000$ $0100110010000000000010000000000100111101000110110001011001001000011011 ? 110000 ? 000000$ $010011001000000000001000000001000010110000011011000101100110100001 ? 0111110000 ? 000000$ 01001100100000000000100000000101000111010000101010010010011000000110110100100 ? 000000 $0100 ? 1001000000000001000000001010001110100011111100110100110100001001111101009000000$ $0100 ? 1001000000000001000000001010000110100011011100100100110100001101111001001000000$ 010011101000000000001000000000110000110000011010000100100010100001101111001001000000

MAM

010101001000000000000100000010110000110000011000101000011010100001001001110001110000 010001001000000000000100000010110010100000011000000100011010100001001101110000110000 010101001000000000000110000010010000111000011100000100011010100001000011110000110000 010001001000000000000110000010110010110000011000000900011010100001001101110000110000 010101001000000000000100000010111100100000011100001100111010100001001011110000110000 $0101110010000000000001000000101100001110001110100011001110101000010011011100001 ? 0000$ $0101110010000000000001000000101100001100000110100011000110101000010000 ? 11100001 ? 0000$ 010111001000000000000100000010110000110000011000001100001010100001001111110000110000 $0101010010000000000001000000100100001110000110000011010110101000010010 ? 1110100110000$

HB

1
2
3
4
5
5
6
0
0
7
8
8
9
$01011010111010000000100000001001001011100001101100010110111011000010011110100 ? 000000$ $0101010011 ? 0 ? 0000000100000001001001011000001101100010110111011000110011010100 ? 000000$ 010110101110100000001000000010010010111000001011000101101110110001100111001000000000 $010110101 ? 1010000000100000001001001011000000101100010110111011000110111000100$? 000000 $0101000011 ? 00000000010000000000100 ? ? 11000001101100010110111011000100011000000 ? 000000$

$01010000 ? 1 ? 00000000010000000100100101110000110110001011000101 ? 0001000110000000000000$ $0101000011 ? 00000000010010000000100101110100010111001010001101 ? 000$? 100111001001000000 $0 ? 0 ? ? ? ?$? ? ? ? ? $0 ? 000000010000000100100101110000110110001001001101$? 0000 ? 00110000000010000

TPT
$1 \quad 0101010000001000000010000000001100111110000110001001011001101 ? 000110111100000 ? 000000$

[^0]: Anon. 1995: Minutes of the Dactylanthus Recovery Group Meeting 1995. Department of Conservation, Wellington.

 Anon. 1996: Minutes of the Dactylanthus Recovery Group Meeting 1996. Department of Conservation, Wellington.

 Doyle, J.L; Doyle, J.L. 1990: Isolation of plant DNA from fresh tissue. Focus 12/1: 13-15.
 Ecroyd, C.E. 1995: Dactylanthus taylorii recovery plan. Department of Conservation, Wellington.
 Ecroyd, C.E. 1996: The ecology of Dactylanthus taylorii and threats to its survival. New Zealand Journal of Ecology 20: 81-100.

