Survey and monitoring of black petrels on Great Barrier Island, 2001/02

DOC SCIENCE INTERNAL SERIES 134

Elizabeth A. Bell and Joanna L. Sim

Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand

DOC Science Internal Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peer-reviewed.

Individual contributions to the series are first released on the departmental website in pdf form. Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in the DOC Science Publishing catalogue on the website, refer http://www.doc.govt.nz under Publications, then Science and Research.

© Copyright September 2003, New Zealand Department of Conservation

ISSN 1175-6519 ISBN 0-478-22475-3

In the interest of forest conservation, DOC Science Publishing supports paperless electronic publishing. When printing, recycled paper is used wherever possible.

This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing and layout by Geoff Gregory. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington.

CONTENTS

Abs	tract		5
1.	Intro	oduction	6
2.	Obje	ectives	6
3.	Metl	nods	7
	3.1	Study burrows	7
	3.2	Census grids	8
	3.3	Satellite transmitters	8
	3.4	Night banding	10
4.	Resi	ılts	10
	4.1	Number of burrows in the census grids	10
	4.2	Study burrows	11
	4.3	Banding data	12
	4.4	Population estimate	12
	4.5	Satellite transmitters	12
5.	Disc	ussion	14
	5.1	Census grids	14
	5.2	Study burrows	14
	5.3	Rat and feral cat predation	15
	5.4	Chicks	15
	5.5	Population estimate	15
	5.6	Banding data	16
	5.7	Satellite transmitters	16
	5.9	Conservation	17
6.	Reco	ommendations	18
7.	Ack	nowledgements	19
8.	Refe	rences	19
App	endix	1. Results from the burrows around Mt Hobson (Hirakimata)	20

Survey and monitoring of black petrels on Great Barrier Island, 2001/02

Elizabeth A. Bell and Joanna L. Sim

Wildlife Management International Limited, P.O. Box 14-492, Wellington, New Zealand

ABSTRACT

During the 2001/02 breeding season for black petrel (Procellaria parkinsoni), 285 burrows around the summit of Mt Hobson, Great Barrier Island, were identified and intensively monitored over summer. Only 283 burrows were included in the study and of these 192 were used by breeding pairs, 68 by nonbreeding adults and the remaining 23 were empty. Several factors affecting black petrel breeding success were noted. In April, 135 chicks were present in the study burrows, corresponding to a breeding success of 70%. Nine census grids were also monitored. A total of 125 burrows were located within the grids and, of these, 81 burrows were used for breeding. An extra three burrows were found in three grids, two of which were newly dug and a previously investigated burrow was now active. Extrapolating from these grid burrows we estimate that the black petrel population around the peak of Mt Hobson consists of 4000 birds. Nine chicks from earlier breeding seasons have been recovered within the Mt Hobson colony area. Of these, three have paired and successfully bred. A male pre-breeder (banded as a chick during the 1996/97 season) was caught on a longline vessel off the Kermadec Group. 'Dummy' satellite transmitters were placed on 24 adults, each incubating an egg. Only three transmitters were not recovered. One transmitter was seen by a Ministry of Fisheries observer near the West Norfolk Ridge $(33^{\circ} 54.6^{\circ} \text{ S}, 167^{\circ} 56^{\circ} \text{ E})$.

Keywords: black petrels, *Procellaria parkinsoni*, monitoring, population estimates, breeding success, predation, bycatch, satellite transmitter, Great Barrier Island, New Zealand

© September 2003, New Zealand Department of Conservation. This paper may be cited as: Bell, E.A.; Sim, J.L. 2003: Survey and monitoring of black petrels on Great Barrier Island, 2001/02.

1. Introduction

The black petrel (*Procellaria parkinsoni*), an endemic seabird, breeds on Little and Great Barrier Islands, New Zealand. On Great Barrier Island the main breeding area is around the summit of Mt Hobson (Hirakimata). Monitoring during the 2001/02 breeding season is a continuation of a study begun in 1995/96 (Bell & Sim 1998a, 1998b, 2000a, 2000b, 2000c, 2002), and the data collected will be added to existing information on the black petrel population. This study is designed to ensure that any population changes are detected in time to implement appropriate management strategies.

2. Objectives

The main objective of this study was to undertake an annual census of the black petrel population on Great Barrier Island via burrow monitoring and the banding of adults and fledglings to establish adult mortality, breeding success and recruitment. Since this study is a continuation from previous breeding seasons, it will also provide more data to establish current population trends and assist in determining causes and timing of mortality. During discussions with the Seabird Working Group (DOC), extensions to the programme were recommended. These were added to this season's programme.

The study objectives were:

- To monitor a sample of black petrel burrows within the main breeding area. To band all adults present in the burrows during November/December and January/February and all remaining fledgling chicks during April.
- To determine breeding success in the sample of long-term study burrows. Causes of breeding failure, such as predation or disappearance of parents, to be recorded.
- To monitor and re-survey the census grids and study area for new burrows. To band and recapture as many breeding and non-breeding birds present as possible.
- To determine a population estimate by extrapolating from the grid areas to the main Mt Hobson breeding area.
- To undertake a mark/recapture programme at the beginning of the breeding season (November/December) to determine pre-breeder survival, age of first return and age of first breeding; and to band as many birds as possible.
- To confirm the breeding status of adults during each visit to the colony (i.e. to monitor the study burrows at the beginning, middle and end of the breeding season, record breeding status and, where possible, identify the sex of the resident adult and to band all adults present in the burrows).
- To increase the frequency of night banding during the entire breeding season.
- To establish whether satellite transmitters can be carried by black petrels to determine foraging range in the future (i.e. trial 'dummy' transmitters).

3. Methods

3.1 STUDY BURROWS

The study site on Mt Hobson (Fig. 1) was visited from 25 November to 5 December 2001. During this visit the study burrows (n = 282) were checked for presence of adults and eggs. Any adult present was removed from the burrows, banded (or had the band number recorded if a recapture) and sexed by viewing the cloaca (if swollen, this indicates the bird is a female; the cloaca is particularly obvious immediately after egg laying), and returned to the burrow. The presence of an egg was noted.

Figure 1. Location of the burrows and census grids around the summit area of Great Barrier Island. Figs 2-4 show the burrow numbers within each of the nine census grids.

Kauri Dam grid one (KDG1)

Kauri Dam grid two (KDG2)

Kauri Dam grid three (KDG3)

Figure 2. Location of Kauri Dam grid sites (each grid is 40×40 m).

During the next visit to the colony (15 January to 16 February 2002), the number of study burrows was increased from 282 to 285 (Figs 1-4). To ensure accurate monitoring of the study burrows, they were accessible either through the main entrance or via an opening that had been excavated through the burrow roof into the chamber. This opening was covered by a piece of plywood, with soil and debris camouflaging the cover.

As in the first visit, any adult present in the burrow was removed, banded (or the band number recorded if a recapture), and returned to the burrow. Eggs or chicks were noted if present; the lack of eggs or chicks identified nonbreeding birds. The study burrows were monitored again (2-6 April 2002) and all remaining fledgling chicks were banded. This information was used to determine breeding success.

3.2 CENSUS GRIDS

The nine census grids (each 40×40 m) set up around Mt Hobson were systematically searched (at 1 m intervals) to locate any new burrows and to determine this season's occupancy (Figs 1-4). Any birds present in a burrow within the census grids were dealt with as explained in Section 3.1.

3.3 SATELLITE TRANSMITTERS

Each dummy transmitter weighted 22 g, had a streamlined front and measured 20 mm \times 66 mm \times 13 mm with a 'battery' (16 mm \times 25 mm \times 7 mm) protruding out from the lower right side and a 200 mm length of wire to represent the antenna, similar to the design in Söhle et al. (2000). Twentyfour dummy transmitter models were used. Of these, four were attached with glue only, eight with tape only (using either TesaTM or DuctTM tape) and 12 with a combination of tape, sewing and glue (using a design developed by I. Söhle, pers. comm.). Ten transmitters were attached on 20 January 2002 and the remaining 14 on 21 January 2002. Five were placed on known males and one on a known female; the other birds were of unknown sex. Transmitters were placed on incubating birds and, where possible, were left on for one foraging trip only. The burrows were monitored daily (and on some nights if required to recapture a parent feeding a chick). As soon as the parent returned from the foraging trip (varied between 7-17 days), the transmitter was removed.

Palmers Track grid one (PTG1)

Palmers Track grid two (PTG2)

Palmers Track grid three (PTG3)

Figure 3. Location of Palmers Track grid sites (each grid is 40×40 m).

South Fork Track grid one (SFG1)

South Fork Track grid two (SFG2)

South Fork Track grid three (SFG3)

Figure 4. Location of South Fork Track grid sites (each grid is 40×40 m).

3.4 NIGHT BANDING

In both the November/December 2001 and January/February 2002 visits to the study area, night banding was undertaken. This involved searching the study area by walking the track system and capturing any adult on the surface. Several nights were also spent at known launch sites and birds were captured while taking off or landing. All birds were banded or had their band numbers recorded. During the November/December 2001 visit, sex was determined if possible (by cloacal inspection).

4. Results

4.1 NUMBER OF BURROWS IN THE CENSUS GRIDS

A total of 125 burrows were found in the nine census grids (Table 1, Figs 2-4). Of these, 81 burrows were used by breeding pairs, 30 were used by nonbreeding adults and 14 burrows were empty. There were also 6 'potential' burrows within the grids, which were not included in any burrow estimate (we define 'potential' burrows as those which have been investigated and/or preliminarily dug out, but were not yet being used by breeding or non-breeding petrels).

Extrapolating from the grids, the 'useable' burrow density was 87 (\pm 17) burrows/ha, with 56 (\pm 13) burrows/ha used for breeding, 21 (\pm 6) burrows/ha

AREA AND			GRII	O ONE					GRII	D TWC)	GF	RID TH	REE
BURROW TYPE	95/	96/	97/	98/	99/	00/	01/	98/	99/	00/	01/	99/	00/	01/
	96	97	98	99	00	01	02	99	00	01	02	00	01	02
Kauri Dam grid														
Empty	1	1	1	1	3	1	4	0	0	0	1	2	1	1
Breeding	8	10	8	12	11	12	11	15	16	13	16	3	3	4
Non-breeding	5	5	7	6	8	9	8	4	5	9	6	0	3	2
TOTAL	14	16	16	19	22	22	23	19	21	22	23	5	7	7
Palmers Track grid														
Empty	3	0	0	1	1	0	1	0	0	0	0	0	2	3
Breeding	7	13	13	15	18	16	19	10	9	10	10	9	6	6
Non-breeding	3	6	7	6	5	9	5	1	2	1	1	0	2	1
TOTAL	13	19	20	22	24	25	25	11	11	11	11	9	10	10
South Fork Track grid														
Empty	2	1	1	0	1	3	4	1	1	1	0	1	0	0
Breeding	5	12	11	11	10	10	8	2	1	3	3	3	3	4
Non-breeding	2	1	3	5	6	4	5	1	2	0	1	0	1	1
TOTAL	9	14	15	16	17	17	17	4	4	4	4	4	4	5
ANNUAL TOTALS	36	49	51	57	63	64	65	34	36	37	38	18	21	22

TABLE 1. TYPE AND NUMBER OF BURROWS WITHIN THE CENSUS GRIDS ON GREAT BARRIER ISLAND.

for non-breeding and 9 (\pm 1) burrow/ha that were empty. Over the past three seasons when the nine census grids have been monitored, the densities have been very similar ('useable' ranging from 81 to 87 burrows/ha; breeding, 53-56 burrows/ha; non-breeding, 19-26 burrows/ha; and empty, 6-10 burrows/ha (Bell & Sim 2000c, 2002; Table 1)).

4.2 STUDY BURROWS

Within the 283 study burrows (in those where birds could be reached), 192 contained breeding birds, 68 contained non-breeding birds, and 23 were empty. There were 57 failures due to various factors (loss of eggs, predation, infertile egg, etc., Table 2). This corresponds to a breeding success of 70% (Table 2).

Both parents were identified in 158 of the breeding study burrows. There were 30 burrows where only one parent was identified and 4 burrows where no parents were identified (Appendix 1). Of the non-breeding burrows, there were 35 burrows where two or more birds were identified, 19 where one was identified and 14 where no birds were present during the day, but the burrows were active at night (Appendix 1).

		96/97	97/98	98/99	99/00	00/01	01/02
Numbe	Number of study burrows		137	197	248	255	283
Eggs	laid	92	95	142	178	168	192
	predation (rat)	6	1	2	9	6	5
	crushed ^a	5	0	1	10	6	5
	abandoned	2	1	5	1	3	9
	infertile	6	4	12	6	8	3
	dead embryo (at various stages)	0	8	6	13	9	14
	disappeared egg ^b	0	0	0	0	0	11
Chicks	hatched	73	81	116	139	136	145
	predation (rat)	0	0	2	0	0	0
	predation (cat)	0	0	2	2	1	2
	died (disease)	1	0	0	0	0	0
	died (starvation)	0	1	0	0	0	0
	died (unknown causes)	0	0	3	6	7	8
	fledged ^c	72	80	109	131	128	135
Overall	breeding success (%)	78	84	77	73.5	76	70

TABLE 2.BREEDING SUCCESS AND CAUSES OF MORTALITY IN THE STUDYBURROWS ON GREAT BARRIER ISLAND.

^a Eggs have been crushed by the parents or during fighting with interloping birds and only shell fragments recovered from the burrow. Some may have been predated by rats, infertile or contained an embryo which died.

^b Eggs were present in November/December, but gone when first checked in the following January.
 Many of the burrows had been cleaned out and the adults were not caught again.

^c All chicks still present at end of April trip. It is assumed all will fledge safely.

4.3 BANDING DATA

There were 462 adults identified during the 2001/02 season (Table 3). Of these, 446 were from the study burrows, with 344 already banded and 102 banded this season. Sixteen other adults were caught (2 already banded) from non-study burrows around the summit area. The 135 chicks present in the study burrows and 23 chicks in non-study burrows were also banded (Table 3).

TABLE 3. BANDING AND RECAPTURE DATA FOR BLACK PETRELS FROM GREAT BARRIER ISLAND.

	95/96	96/97	97/98	98/99	99/00	00/01	01/02
Recaptures of birds banded prior to 1995	18	30	23	22	28	26	26
Recaptures of birds banded in 1995/96	-	14	14	14	17	15	13
Recaptures of birds banded in 1996/97	-	-	113	86	85	74	75
Recaptures of birds banded in 1997/98	-	-	-	32	32	30	33
Recaptures of birds banded in 1998/99	-	-	-	-	95	82	71
Recaptures of birds banded in 1999/00	-	-	-	-	-	86	77
Recaptures of birds banded in 2000/01	-	-	-	-	-	-	51
Total recaptures	18	44	150	154	257	313	346
Number of new adults (banded that season)	41	180	60	129	149	97	116
Total adults	59	224	210	283	406	410	462
Number of chicks (banded that season)	59	69	85	117	133	137	158
Total number of birds	118	293	295	400	539	547	620
Number of chicks recaptured alive(returned to colony)	-	-	-	-	1	1	9
Band recoveries from dead birds	-	1	1	-	2	1	2

4.4 POPULATION ESTIMATE

Extrapolating from the census grid data to the 30 ha around the summit of Mt Hobson, the black petrel population can be estimated at 4000 \pm 867 birds (Table 4). This consists of 625 \pm 168 non-breeding birds and 3375 \pm 699 breeding adults. Over the past three seasons when the nine census grids have been monitored, the population estimates have been very similar (ranging from 3917 to 4000 birds (Bell & Sim 2000c, 2002; Table 5)).

4.5 SATELLITE TRANSMITTERS

Once the 24 'dummy' transmitters were attached, the birds remained in the burrows incubating their eggs for between 1 and 10 days. Two birds abandoned their eggs, each for one night only, and the transmitters were removed on their return. One of these birds abandoned the egg again and the egg failed to hatch. With the exception of this abandoned egg, attaching the transmitters did not generally affect breeding outcome. All but three eggs hatched, and of those one

	DENSIT	Y (no./ha)	POPULA	TION (30 ha)
	Breeding adults	Non-breeding adults	Breeding adults	Non-breeding adults
Grid One (KDG1)	100	31.25	3000	937.5
Grid Two (KDG2)	37.5	6.25	1125	187.5
Grid Three (KDG3)	50	6.25	1500	187.5
Grid One (PTG1)	237.5	31.25	7125	937.5
Grid Two (PTG2)	125	6.25	3750	187.5
Grid Three (PTG3)	75	6.25	2250	187.5
Grid One (SFG1)	137.5	50	4125	1500
Grid Two (SFG2)	200	37.5	6000	1125
Grid Three (SFG3)	50	12.5	1500	375
Mean	112.5 ± 25.5	20.83 ± 6.25	3375±698.8	625 ± 168.3
Total population estima	3133-4867 a	idults		
2001/02 Population estin	4000 ± 867 a	dults		

TABLE 4.2001/02 DENSITIES AND POPULATION ESTIMATES OF BLACK PETRELSIN THE 30 ha SUMMIT AREA AROUND MT HOBSON, GREAT BARRIER ISLAND.

TABLE 5. ANNUAL MEAN POPULATION ESTIMATE SINCE 1999/2000 BREEDING SEASON FOR BLACK PETREL, USING THE 30 ha AREA AROUND MT HOBSON, GREAT BARRIER ISLAND.

YEAR	BREEDING Adults	NON-BREEDING Adults	TOTAL Population	RANGE
1999/2000	2938 ± 800	583 ± 186	3521 ± 986	2535-4507
2000/01	2792 ± 676	792 ± 235	3584 ± 911	2673-4495
2001/02	3375 ± 699	625 ± 168	4000 ± 867	3133-4867

was infertile, one died at the pipping stage, and the third was the abandoned egg.

Twenty-one transmitters were recovered (20 in February 2002 and 1 in April 2002). Three transmitters were lost at sea. Two birds were not recaptured, although one (with a tape-only transmitter) continued to feed its chick, but did not return when we were monitoring the burrow at night, and the other's egg died at pipping and its partner cleaned the burrow out before its return (this glue-only transmitter was recovered in the burrow in April). It was thought that the bird with the missing tape-only transmitter could have removed it, as the bird was very aggressive and had spent time pecking at it while still in the burrow incubating. At least five of the transmitters showed signs of being pecked by the birds.

The transmitters were easily attached and removed. The quickest method was glue only (c. > 5 min), followed by tape only (> 10 min), and then the combination method (10-15 min). The glue-only method was the least successful, with two transmitters lost at sea and one recovered in a burrow. One tape-only transmitter was also lost at sea. One of the combination transmitters (tape/sew/glue) nearly fell off the bird, with only a small section of tape

attached on recapture. If this bird had returned to sea, it was thought that this transmitter would have been lost.

The length of time at sea (foraging trip) ranged from 1 to 17 nights. One transmitter was seen by a Ministry of Fisheries observer on 22 January 2002 at 33° 54.6'S, 167° 56'E (West Norfolk Ridge). At the time at least 25 black petrels were observed near the boat, feeding on offal and discards (R. Blezard pers. comm.).

5. Discussion

The black petrel population on Great Barrier Island has been monitored since the 1995/96 breeding season (Bell & Sim 1998a, 1998b, 2000a, 2000b, 2000c, 2002).

5.1 CENSUS GRIDS

Three census grids were set up in each of the 1995/96, 1998/99 and 1999/2000 breeding seasons. All nine grids were intensively monitored during the three periods of 2001/02 breeding season, 25 November to 5 December 2001, 15 January to 16 February 2002 and 2-6 April 2002. Three new burrows were located in the grids (one in KDG1, KDG2 and SFG3), with two of these being occupied by breeding pairs, and the other by a non-breeding bird. The non-breeding bird had excavated the burrow this season. As this study has continued, the number of burrows found within the grids has risen each year (Table 1). It appears that pre-breeding and non-breeding birds are returning to their natal area and are starting to excavate new burrows.

During the monitoring this 2001/02 season, six potential burrows were identified within the nine grids. All had been identified in earlier breeding seasons and were still not in use.

5.2 STUDY BURROWS

A further 28 study burrows were added this 2001/02 season to the 255 previously identified. There were 135 breeding successes and 57 breeding failures this season, equating to an overall breeding success rate of 70%. This breeding success is slightly lower than in previous years (Table 2), but still higher than reported in the earlier research by Imber (1987) in 1977 (50%) and in 1978 (60%) and Scofield (1989) in 1988/89 (62%). The lower success rate for 2001/02 may be explained by the November/December trip to the colony. In previous years an egg laid early in the season which may already have failed, been crushed and removed from the burrow by the time we visited the colony in January, would not have been recorded. This 2001/02 season however, 11 eggs that were present in November/December 2001 had disappeared by the

return visit in January 2002 (6%). Adding this percentage to the breeding success rate would place the season within the range of previous years. It will be interesting to continue this monitoring stage to enable a 'correction' factor to be added to the earlier seasons.

5.3 RAT AND FERAL CAT PREDATION

There were two incidents of cat predation (1%) on chicks, while rats predated 3% of the eggs laid within the study burrows this season. As in 2000/01 season, both cat predation events occurred along Palmers Track. Juvenile petrels are vulnerable to feral cat predation as soon as they leave the burrows to strengthen their wings and practise flying (Warham 1996). It is important to continue cat-trapping in the area.

5.4 CHICKS

In April, 135 chicks were still present in the study burrows. As in the two previous seasons, several chicks were quite small or in poor condition (e.g. lethargic, no pin feathers, poor feather development). This may suggest that only one parent is feeding them or, if both parents are still feeding, that the food quality (or quantity) has been reduced. One chick had what appeared to be avian pox. This chick was banded, but may not survive. While slow development and poor condition may not prevent fledging, it would make it unlikely that the bird could make the first flight to South America which, in turn, would reduce juvenile survival estimates. It is important to note that the condition of chicks (size, feather development and weight) appears to have deteriorated over the past four seasons. It would be interesting to determine whether the adults are having problems locating adequate quantities of food, having to travel further to feed and whether food quality was good enough to raise a healthy chick.

5.5 POPULATION ESTIMATE

Extrapolating from the nine census grids (1.44 ha in total) to the Mt Hobson summit area (30 ha), the population of the Great Barrier Island black petrels is estimated at 4000 birds. This estimate is similar to those for the 1999/2000 and 2000/01 seasons (Table 5), but less than for earlier years (Bell & Sim 1998a, 1998b, 2000a, 2000b). This is likely to be a direct result of increasing the number of census grids from three to nine and decreasing error margins. Increasing the number of grids gives a better idea of burrow density within each distinct area and, as a result, gives a statistically sounder population estimate for the entire study area.

To expand this population estimate to Great Barrier Island as a whole, further census grids would have to be established in other areas on the island. Black petrels are known to nest in the Northern Block (Tataweka), other high points around the summit area, in small pockets of private land, and recently, towards the southern end of the island. Census grids or further intensive surveys in these areas would give a better idea of density and range around the island. Increasing the number of census grids using other areas around the summit would refine accuracy to the population estimate and might enable a population estimate for the entire island to be extrapolated from these multiple grids (in each known black petrel breeding area). These grids could be established on or near the Hogs Back, Mt Heale and Mt Matawhero.

5.6 BANDING DATA

A total of 620 birds were identified this season. Of these, 462 were adults and 158 were fledglings. There were 346 recaptures of previously banded birds and of these nine were returned chicks; of these, two were female and seven were males. These chicks had been banded in the 1995/96 (2), 1996/97 (2) and 1997/ 98 (5) breeding seasons. Three of them were breeding (only one successfully raised a chick), which gives ages of first recorded breeding being at five years (two chicks) and six years (one chick). Both females and five of the seven males were recaptured in their natal area (less than 50 m from their 'hatching' burrow). The remaining males were caught 150 m and 500 m away from their natal areas. It is important to monitor for more returned chicks throughout the summit area.

5.7 SATELLITE TRANSMITTERS

The transmitter trial was very successful. The dummy transmitters were easily attached and removed and, of the 24 applied, 21 were recovered. The transmitters did not appear to affect the outcome of breeding.

The quickest method was glue only; however, this was the least successful, with two transmitters lost at sea. Although relatively easy to remove, the construction (material attached to the base of the transmitter) meant it would be difficult to reuse in the same field season (as is hoped to do when using 'real' transmitters). Another important factor is the amount of glue, as too much can melt the transmitter and even burn the skin (both birds and people).

The tape-only method was also relatively quick to attach and detach, followed the combination method. The combination method was the most awkward, requiring tape, needles, strong cotton and glue. Although a tape-only transmitter was lost, this was the easiest method to manage in the field (both attaching and removing) requiring only a roll of tape.

It would be possible to get information on short-term foraging trips (1–12 days) during the breeding season when satellite transmitters become small enough to fit black petrels (approximately 25 g). At present, satellite transmitters can be placed on Westland petrels (*Procellaria westlandica*) and, as technology develops, it should be possible to fit them on black petrels. For this trial the transmitters weighed 22 g, which is just over 3% of the average weight of a breeding black petrel (700 g) and within the recommended range for size and

weight of transmitters (5% of the bird's body weight, C.J.R. Robertson, pers. comm.). However, most transmitters weigh over this at present. It is important to trial 'dummy' transmitters further to determine behavioural changes during incubation and chick rearing. It is also important to investigate the possibility of the black petrels wearing the transmitters for multiple foraging trips to determine whether attachment for longer terms affects the behaviour of the birds, or their survivorship or attendance at the colony, as has been shown in sooty shearwaters, *Puffinus griseus* (Söhle et al. 2000).

5.9 CONSERVATION

Large numbers of the public continue to visit Mt Hobson and, as in other breeding seasons, had little or no direct impact on the breeding success of the black petrel. The construction of raised walkways around the summit has decreased damage to the environment, and burrows. However, serious erosion continues to occur along the summit ends of the South Fork and Palmers Tracks (E. Bell, pers. obs.) Extended walkway construction in these areas is recommended. This should be done with full consultation with the authors to prevent the accidental destruction of burrows, since certain places along these tracks have high burrow densities.

Although new signage has been placed close to the summit, elsewhere old illegible interpretive signs still need to be replaced on Great Barrier Island. With the high number of visitors to the island, this is an excellent opportunity to increase public awareness of endemic species and conservation issues that affect them. This is particularly important in relation to littering and public fouling, which continues to be a problem in the summit area.

A male pre-breeder (banded as a chick during the 1996/97 season, H31091) was caught on a longline vessel off the Kermadec Group (C.J.R. Robertson, pers. comm.). This bird was likely to have been on its first return (age 4 years) to New Zealand. Bycatch of black petrels on the domestic longline fishing industry has been recorded previously (Robertson et al. 2003). Black petrels caught on longlines between December to June could be incubating an egg and/or feeding a chick. Not only would this result in a breeding failure, reducing overall productivity and recruitment, but it directly decreases adult survivorship. Black petrels have delayed maturity, low reproduction rates and high adult survivorship, and any change in adult survivorship, however small, will affect the population greatly (Murray et al. 1993). If breeding adults continue to be caught on longlines, this species could be drastically affected. It is important to continue to monitor the Great Barrier Island black petrel population. Long-term population data can be used to develop an accurate population model to assess adult survivorship, recruitment, mortality and productivity. A population model will assess factors affecting the black petrel population and help to determine the overall effects of bycatch in the longline fishing industry.

6. Recommendations

Monitoring of the black petrel population (using the study burrows) should continue at Great Barrier Island until 2005/06. This will ensure adequate comparative data are collected to determine the population dynamics of its black petrels, in particular the development of a population model to determine survivorship, mortality and the effects of predation, longline fishing and other environmental factors.

The November/December visit to the study area should continue. This would allow a large number of birds to be banded or recaptured easily, as the birds are generally outside the burrows at this time. It would also enable a markrecapture programme to be established. At the same time, the study burrows could be checked for breeding status, to give a more accurate estimate of breeding success. This would also provide a chance to recapture returning birds banded as chicks.

The January/February visit should continue and remain at three weeks duration. This would still enable the study burrows to be monitored intensively, allow the adults to be identified and determine breeding status in the burrows. The April period should continue and remain one week long. This would allow time to band the surviving chicks.

The dummy satellite transmitter trial should be repeated, with transmitters being placed on the birds in December and removed in January/February to determine by which attachment methods they stay secure in the long term.

A sample of 25 breeding birds and 25 non-breeding birds should be colourmarked (with dazzle spray) to determine foraging locations, using sightings from Ministry of Fisheries observers and the public.

The Northern Block (Tataweka) should be visited in November/December to survey the black petrel population to gain a more accurate estimate of the population in that area.

Census grids should be established on other high points around the Mt Hobson area (e.g. Mt Heale, Mt Matawhero, Hogs Back). This will ensure that a better estimate of the black petrel population on Great Barrier Island can be made. These sites should be monitored as long as the study continues.

Cat-trapping should be established over the black petrel breeding season, November to June, especially during pre-laying (November) and the fledging period (May to June).

The walkway system down Palmers (Windy Canyon) and South Fork Tracks should be continued. Construction should be completed between July and October, when the chicks have fledged and before the adults return. Known petrel burrows could be identified for the construction team to avoid.

7. Acknowledgements

This project was funded by the fishing industry with a Conservation Services Levy (CSL) via the Science & Research Unit, Department of Conservation (Investigation No. 3082). Dave Agnew and Perry Duggan (DOC, Great Barrier Island) assisted with transport around Great Barrier and logistical support while in the field. Susan Bettany and Matthew Brown assisted in the field. Ilka Söhle provided the dummy satellite transmitters, assisted in the field and gave advice on her transmitter work. Reg Blezard (CSL, DOC) provided information on the 'dummy' satellite transmitter observation from the Ministry of Fisheries observer. Christopher Robertson provided information on bycatch. Brian Bell read and commented on the manuscript. Mike Imber (S&R, DOC) gave advice on both fieldwork and analysis.

8. References

- Bell, E.A.; Sim, J.L. 1998a: Survey and monitoring of black petrels on Great Barrier Island 1996. *Science for Conservation* 77. Department of Conservation, Wellington.
- Bell, E.A.; Sim, J.L. 1998b: Survey and monitoring of black petrels on Great Barrier Island 1997. *Science for Conservation* 78. Department of Conservation, Wellington.
- Bell, E.A.; Sim, J.L. 2000a: Survey and monitoring of black petrels on Great Barrier Island 1997/98.
 Published client report on contract 3085, funded by Conservation Services Levy.
 Department of Conservation, Wellington. 24 p. http://csl.doc.govt.nz/CSL3085.pdf
- Bell, E.A.; Sim, J.L. 2000b: Survey and monitoring of black petrels on Great Barrier Island 1998/99.
 Published client report on contract 3089, funded by Conservation Services Levy.
 Department of Conservation, Wellington. 23 p. http://csl.doc.govt.nz/CSL3089.pdf
- Bell, E.A.; Sim, J.L. 2000c: Survey and monitoring of black petrels on Great Barrier Island 1999/2000.
 Published client report on contract 3018, funded by Conservation Services Levy.
 Department of Conservation, Wellington. 30 p. http://csl.doc.govt.nz/CSL3018.pdf
- Bell, E.A.; Sim, J.L. 2002: Survey and monitoring of black petrels on Great Barrier Island 2000/2001. DOC Science Internal Series 48. 24 p. Department of Conservation, Wellington.
- Imber, M.J. 1987: Breeding ecology and conservation of the black petrel (*Procellaria parkinsoni*). Notornis 34: 19–39.
- Murray, T.E.; Bartle, J.A.; Kalish, S.R.; Taylor, P.R. 1993: Incidental capture of seabirds by Japanese southern bluefin tuna longline vessels in New Zealand waters, 1988-1992. *Bird Conservation International 3 (3)*: 181-210.
- Robertson, C.J.R.; Bell, E.A.; Scofield, P. 2003: Autopsy report for seabirds killed and returned from New Zealand fisheries, 1 October 2000 to 30 September 2001. *DOC Science Internal Series* 96. 36 p. Department of Conservation, Wellington.
- Scofield, R.P. 1989: Breeding biology and conservation of the black petrel (*Procellaria parkinsoni*) on Great Barrier Island. Unpublished MSc (Zoology) thesis, University of Auckland.
- Söhle, I.S.; Moller, H.; Fletcher, D.; Robertson, C.J.R. 2000: Telemetry reduces colony attendance by sooty shearwaters (*Puffinus griseus*). New Zealand Journal of Zoology 27: 357–365.
- Warham, J. 1996: The behaviour, population biology and physiology of the petrels. Academic Press, London.

Appendix 1

Results from the burrows around Mt Hobson (Hirakimata)

Note that bold entries are non-study burrows (i.e. cannot reach the resident birds) and those study burrows within census grids have the location noted (PTG1, 2, 3; SFG1, 2, 3 or KDG1, 2, 3).

BURROW	BAND	OUTCOME		BURROW	BAND	OUTCOME
1	H32013	Non-breeder	1	24	-	Non-breeder
	H32050			25	H25487	Chick H32978
2	H25408	Chick H32909			H31217	
	H32008			26	H23014	Chick H32971
3	H31382 (M)	Non-breeder			H31218	
	H31109(F)			27	H28046 (M)	Rat predation
4	H31972 (M)	Crushed egg			-	
	H23017 (M)			28	H31114 (M)	Disappeared egg
5	H31020(F)	Chick H32976			-	
	H31161 (M)			29	H31210	Disappeared egg
6	H31291	Non-breeder			H28004	
	H31576			30	H25446	Chick H33048
7	H31272	Dead embryo			H25445	
	H30854	·		31	H31101(M)	Abandoned
8	H31103	Chick H33069			-	
	H31273			32 (PTG1)	H25480(M)	Dead embryo
9	H25427 (M)	Abandoned			-	,
-	-			33	H31244	Non-breeder
10	H32901	Non-breeder		34	H31121	Chick H32915
	H32003				H31248	
11		Empty		35	H32024	Non-breeder
12	H31194(M)	Dead chick			H32040	
	H28060 (F)				H32045	
13	H31281 (M)	Chick H32932		36	H31129	Chick H33008
_	H25418(F)				H25520	
14	H31284(F)	Chick H32933		37	H31107 (F)	Chick H32998
	H31202 (M)				H28036 (M)	2
15		Empty		38		Empty
16	H31004	Dead embryo		39	H25426(M)	Dead chick
	H32002				H31578(F)	
17	H31966 (M)	Chick H32988		40	H31111 (M)	Chick H32919
	H28009(F)				H31122 (F)	
18	H31204	Dead embryo		41	H31112 (M)	Chick H32952
	H25434	,			-	
19	H31971 (F)	Chick H32975		42	H29676(M)	Chick H32997
	H31162 (M)				H32004(F)	
20	H25696	Chick H32986		43	H31016 (M)	Non-breeder
-	H29683			44	H31130	Chick H33016
21	H31235	Chick H32927			H25424	
	H31019			45	H31995	Non-breeder
22	H31214	Chick H33030		46	H28813 (M)	Non-breeder
	H25492				H28019(F)	
23	H31157 (F)	Disappeared egg		47	H31005	Chick H33031
	-				H31018	
			1	1		

BURROW	BAND	OUTCOME	
48	H31003 (M) H26991 (F)	Disappeared egg	
49	H31243 H31010	Chick H32984	
50	H31282 H25476	Chick H32983	
51	H29670 (F)	Chick H32973	
52	H31289 H31255	Chick H32972	
53	H31021 H31022	Chick H32970	
54		Empty	
55 (PTG1)	H23635 (M)	Chick H32954	
56 (PTG1)	H31151 (F) H31152 (M)	Abandoned	
57 (PTG1)	H28013 (F) H31153 (M)	Chick H32955	
58 (PTG1)	H28029 H31205	Chick H32958	
59 (PTG1)	H31125	Chick H32960	
60 (PTG1)	H31034 (M) H25456 (F)	Disappeared egg	
61 (PTG1)	H29684 (F) H30878 (M)	Abandoned	
62 (PTG1)	H31257 (M) H25486 (F)	Chick H32969	
63 (PTG1)	H28055 (M)	Cat predation	
64 (PTG1)	H31286(F)	Abandoned	
65	H31460 H27548	Dead embryo (at pipping)	
66	H31990 H31999	Non-breeder	
67 (KDG1)	H31270 H31271	Chick H33039	
68 (KDG1)	H32005 (M) H31172 (F)	Non-breeder	
69	H27604 (M) H31240 (F)	Chick H33047	
70	H31992 (F) H27665 (M)	Non-breeder	
71(KDG1)	H31023 H31242	Chick H33063	
72(KDG1)	H32907	Non-breeder	
73(KDG1)	H28572 (M) H31300 (F)	Chick H33068	
74(KDG1)	H31974 H29693	Non-breeder	
75(KDG1)	H30867 H31147	Non-breeder	

BURROW	BAND	OUTCOME
76 (KDG1)	H25402 (F) H31001 (M)	Non-breeder
77 (KDG1)	H25407 (F)	Non-breeder
78 (KDG1)	H25512	Chick H33070
79 (KDG1)	H31102	Fmpty
80 (KDG1)	H29682 (F)	Chick H33065
	H25404 (M)	6mex 119,9009
81 (KDG1)	H31155 (F)	Non-breeder
	H28046 (M)	
82	H31978 (F)	Non-breeder
	H30889 (M)	
83	H25413 (F)	Chick H32989
	H31012 (M)	
84	H31179(F)	Dead embryo
	H29677 (M)	
85 (SFG1)	H31406(F)	Non-breeder
	H31118(M)	
86 (SFG1)		Empty
87 (SFG1)	H32023	Non-breeder
	H32033	
88 (SFG1)		Empty
89 (SFG1)	H31233 (M)	Chick H33025
	H30910(F)	
90 (SFG1)	-	Non-breeder
91 (SFG1)	-	Non-breeder
92 (SFG1)	H31261 (F)	Rat predation
	H32928(M)	
93	H27552(F)	Chick H33022
	H30856 (M)	
94	H23018(M)	Chick H33021
05	H31028(F)	Ch: -1-1122022
95	H30880 (M)	CHICK H32925
96 (PTG1)	H2J42J(F)	Chick H32051
<i>J</i> U (101)	H31268 (F)	Chick 1152771
97	H30872 (M)	Cat predation
	H31263 (F)	outpreductori
98	-	Non-breeder
99	H31262 (M)	Chick H32942
	H31201 (F)	
100	H29660 (M)	Chick H32974
	H29667 (F)	
101 (KDG1)	H25692(F)	Chick H33066
	H25588(M)	
102 (KDG1)	H25511 (M)	Chick H33046
	H30866(F)	
103 (KDG1)	H31588	Chick H33045
	H29690	
104 (KDG1)		Empty
105		Empty
106	H31038	Dead embryo
	H25458	

BURROW	BAND	OUTCOME	BURROW	BAND	OUTCOME
107	H25688 (M)	Non-breeder	136 (KDG2)	H29691 (F)	Chick H33053
108	H25417	Non-breeder		H29699 (M)	
109	H31052(F)	Chick H32990	137 (KDG2)	H25494 (M)	Chick H3305/
	H25428(M)			H31572(F)	
110 (SFG1)	H31008	Disappeared egg	138 (KDG2)	H25448	Crushed egg
	H31007			H31565	
111 (SFG1)	H31986 (M)	Chick H33027	139	H14012(F)	Chick H32980
	H28033 (F)			H23035 (M)	
112 (SFG1)		Empty	140 (KDG2)	H31377 (M)	Non-breeder
113 (SFG1)	H31987 (M)	Non-breeder		H25686 (M)	
114 (SFG1)	H25453 (M)	Chick H33029		H32047	
	H31142 (F)		141 (SFG2)	-	Breeder
115	H31031 (M) H32022 (F)	Non-breeder	142 (SFG2)	H28026 H28027	Chick H33019
116 (PTG1)	H25411	Non-breeder	143 (KDG2)	H25469	Chick H33062
	H25435			H28021	
117 (SFG1)	H31984(F)	Disappeared egg	144 (KDG2)	H25459(M)	Chick H33061
	-			H31566(F)	
118	H31985(M)	Chick H33035	145 (KDG2)	H25474	Chick H33059
	-			H25504	
119	H25454 (F)	Chick H32953	146 (KDG2)	H25460	Chick H33058
	H31055(M)			H25473	
120 (PTG1)		Empty	147 (KDG2)	H25461 (M)	Chick H33049
121 (PTG1)	H25455	Chick H32957		H25482(F)	
	H31032		148 (KDG2)	H27534	Chick H33050
122 (PTG1)	H31051	Chick H32959		H25483	
	H31050		149 (KDG2)	H27568	Non-breeder
123 (PTG1)	H31053 (M)	Chick H32967		H32010	
	H31246(F)		150 (KDG2)	H25471	Chick H33052
124 (PTG1)	H28032 (M)	Chick H32968		H25493	
	-		151	H25593	Chick H33018
125 (PTG1)	_	Breeder		H29674	
126 (PTG1)	H25577 (M)	Abandoned	152 (SFG2)	H31983 (M)	Chick H33020
	-			H31453 (F)	
127	H25415(M)	Chick H33017	153 (SFG2)	-	Non-breeder
	H31128(F)		154 (PTG1)	-	Non-breeder
128	H31054 (M)	Dead chick	155 (PTG2)	H25497	Dead chick
	H25495(F)			H31574	
129		Empty	156 (PTG2)	H31558	Chick H32962
130	H28212(M)	Chick H32977		H31559	
	H25457 (F)		157 (PTG2)	H31573 (M)	Dead chick
	H32007			-	
131	H25421	Abandoned		H32017 (M)	Interloper
		(handler disturbance)	158 (PTG2)	H25440(F)	Disappeared egg
	H31996			H31451 (M)	11 00
132 (KDG2)	H29681	Dead embryo (at pipping)	159 (PTG2)	H25441 (F)	Chick H32966
	H31568			H31557 (M)	
133 (KDG2)	H25430 (M)	Infertile	160	H25690	Chick H33023
	H32027 (F)			H29671	
134 (KDG2)	H25401 (F)	Non-breeder	161 (PTG2)	H25500	Chick H32961
	H32001 (M)			-	
135 (KDG2)	H25463	Chick H33054	162 (PTG2)	H25442	Chick H32965
	H25447			H25489	- / - /

BURROW	BAND	OUTCOME	BURR
163 (PTG2)	H32910 (M) H25491 (F)	Crushed egg	193 194
164 (PTG2)	H32573 (M) H31151 (F)	Non-breeder	195
165 (KDG2)	H29661 (F) H29700 (M)	Chick H33060	196
166	H25437 (M) H32015 (F)	Non-breeder	197
167	H28012 (M) -	Disappeared egg	198
168 (PTG1)	H32016	Non-breeder	199
169		Empty	
170	H31967 (M)	Abandoned	200
171	H31110 H28006	Chick H32921	201
172	H25502 H31048	Dead chick	202
173	H31143 H28018	Chick H33009	203
174	H28071	Dead embryo	204
	H31973 (M)	Interloper	
175	H25503 (M) H28001(F)	Chick H32987	205
176 (KDG1)	-	Non-breeder	206
177	H31459	Chick H33001	207
178	H32908	Non-breeder	
179	H29694 (M)	Chick H33003	208
	H29697 (F)		209
180	H31560 H31169	Dead embryo	210
181	H31463 (F) H31561 (M)	Chick H33006	211
182	H25514 (M) H31580	Non-breeder	212
183 (SFG1)	H31465 H25515	Chick H33028	213 214
184	H32916	Non-breeder	
185 (KDG1)		Empty	215
186	H31577 (M) H29665 (F)	Chick H32936	216
187	H31047 (M) H31452 (F)	Chick H32914	217
188	H26956(M)	Non-breeder	218
189	H28015	Non-breeder	219
	H31994		220
190	H32036 H32048	Non-breeder	221
191 (PTG2)	H28048 (F) H25450 (M)	Chick H32963	222
192 (SFG1)		Empty	

URROW	BAND	OUTCOME
193 (KDG2)	H32041	Non-breeder
194 (KDG2)	H31569 (M)	Chick H33056
	H31570(F)	
195	H28023	Chick H33051
	H28555	
196	H28016(F)	Chick H33002
	H29951 (M)	
197	H28017 (M)	Infertile
100	-	01:1.0020011
198	H25099 (M)	CIIICK H35011
100	H29080 (F)	Pat prodution
199	H32009	Rat predation
200	- H32006 (F)	Chick H32944
200	H28073 (M)	Omek 1152/11
201	H31581	Chick H32985
-01	H28002	0
202 (PTG2)	H31556(F)	Chick H32964
	H28031 (M)	
203	H29668(F)	Crushed egg (handler
		disturbance)
	H30930 (M)	
204 (KDG1)	H31965 (F)	Crushed egg
	H28008 (M)	
205	H25697	Chick H32982
	H29664	
206	-	Rat predation
	-	
207 (PTG1)	H31137 (M)	Chick H32956
200 (DTC 1)	H319//(F)	Non-handen
208 (PIGI)	H2558/	Non-Dreeder
209 (KDG3)	H25601 (M)	Chick H220/2
210 (KD05)	H29663 (F)	CIIICK H33042
211 (KDG3)	H28812	Chick H33043
211 (1005)	H29689	omen 119.90 19
212 (KDG3)	H28040 (F)	Chick H33040
,	H30869 (M)	
213 (KDG2)		Empty
214 (KDG2)	H25687	Chick H33055
	H25595	
215 (SFG3)	-	Non-breeder
216 (SFG3)	H28051	Chick H33013
	H29673	
217 (KDG3)	H31991	Chick H33041
	H32903	
218	H25556(M)	Non-breeder
219 (PTG3)		Empty
220 (PTG3)	H25555 (M)	Chick H32949
	H31970 (F)	~
221 (PTG3)	H29695 (M)	Dead embryo
222	H31969 (F)	Abardana 1
222	H28049(M)	Abandoned
	-	

BURROW	BAND	OUTCOME	:	BURROW	BAND	OUTCOME
223 (SFG3)	H31598	Chick H33014		254	-	Non-breeder
	H28068			255	-	Non-breeder
224 (PTG3)	H25553	Chick H32948		256	H31081	Non-breeder
	H25564			257	H32901	Non-breeder
225 (SFG3)	H31600	Chick H33015		258 (PTG3)		Empty
	H13634			259	H32025	Chick H32981
226 (PTG3)	H27058(M)	Chick H32937			H32018	
	H28041 (F)			260(SFG3)	H32020	Chick H33012
227 (KDG3)	H25509(M)	Chick H33067			H32034	
	H25583(F)			261	H32021	Disappeared egg
228	H29952 (F)	Chick H33036			_	Shappenred egg
	H23029 (M)			262	H32002	Dead embryo (at pipping)
220 (PTG3)	H280/2	Chick H32026		202	1132902	Dead embryo (at pipping)
227(1103)	1120042	Cilick 1192/20		262	H31080 (E)	Chiele U22004
220 (DTC 2)	112))0)	Emetry		205	H31980(F)	CHICK H55004
250 (P1G5)	11255(0,00)	Empty Non-brooder			-	
251	H25508 (M)	Non-breeder		264	H32028	Non-breeder
	H32014				H28214	
222	H52945	Foresta		265 (KDG2)	-	Non-breeder
252	1121001 (10)	chist H22007		266	H31975	Non-breeder
255	H31981 (M)	Chick H35007			H32000	
22.4	H25558(F)	1 - f		267	H31989 (M)	Chick H33064
254	H25559(F)	Intertile			-	
225	H255/I(M)	D 1111		268	H32030	Non-breeder
235	H25566 (F)	Dead chick			H32049	
226	H28044 (M)			269	H25688	Non-breeder
236	H255/2	Chick H33010			H32029	
	H255/5	cl · 1 W22001		270	H32031	Disappeared egg
23/	H255/5	Chick H32991			H32011	
220 (5501)	H29955	Ch:-L-112202(271 (KDG1)	H32913	Chick H33071
238 (SFG1)	H28057 (M)	Chick H35026		(H32920	
220	H29655 (F)	c1 · 1 W22070		272	_	Chick H33024
259	H25098(M)	Chick H329/9		2/2	_	6116R1153021
2/2	H25/00(F)	c1 · 1 W220/1		273	H32930	Non-breeder
240	H25689(M)	Chick H32941		274	H23034	Dead chick
2/1	H51995(F)			2/1		beau emer
241	1120000	Empty		275	H32037 (M)	Non-breeder
242	H28099	Rat predation		279	H32046 (F)	ton breeder
2/2	H51998	Ch:-1-1122020		276	H32044 (M)	Non-breeder
245	H255/8	Сшек нээ0э8		277	H32043	Chick H32992
244	H221/0	Deedershare		_ / /	-	0
244	H25581	Dead embryo		278	H32035	Chick H32994
245 (VDC1)	H22145	Foresta		270	H32042	Since 11,52771
245 (KDGI)	112550/	Empty		279	H32038(F)	Non-breeder
246 (PIG3)	H25586	Chick H32938		2/2	H31082 (M)	ton breeder
247	H32020	No		280	H32929	Chick H32996
24/	-	Non-Dreeder		200	H32911	Cinex 1152770
248	H29052	Dead embryo (at pipping)		281	H32940	Chick H32995
2/2	H28067	cl · 1 W22000		201	-	
249	п25001 (M)	CHICK H52999		282	_	Chick H33005
250	H31997 (F)	CI - 1 1122000		202	_	Sinck II JJOUJ
250	H319/9(M)	CIIICK H33000		283	H32912 (M)	Non-breeder
251	H30924 (F)	x, i i		205	H3200/	Non-breeder
251	-	Non-breeder		285	H32950	Chick H33037
252	H28059	Chick H32993		20)	-	5111CK 1133037
	-				_	
253	-	Non-breeder				