# Status of New Zealand indigenous aphids, 2002 

DOC SCIENCE INTERNAL SERIES 106
D.A.J. Teulon, M.A.W. Stufkens, C.D. von Dohlen, and J. Kean

Published by
Department of Conservation
P.O. Box 10-420

Wellington, New Zealand

DOC Science Internal Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff, or external contractors funded by DOC. It comprises progress reports and short communications that are generally peer-reviewed within DOC, but not always externally refereed. Fully refereed contract reports funded from the Conservation Services Levy are also included.

Individual contributions to the series are first released on the departmental intranet in pdf form. Hardcopy is printed, bound, and distributed at regular intervals. Titles are listed in the DOC Science Publishing catalogue on the departmental website http://www.doc.govt.nz and electronic copies of CSL papers can be downloaded from http://www.csl.org.nz
© March 2003, New Zealand Department of Conservation

ISSN 1175-6519
ISBN 0-478-22393-5

This is a client report commissioned by the Science \& Research Unit and funded from the Unprogrammed Science Advice fund. It was prepared for publication by DOC Science Publishing, Science \& Research Unit; editing and layout by Geoff Gregory. Publication was approved by the Manager, Science \& Research Unit, Science Technology and Information Services, Department of Conservation, Wellington.

## CONTENTS

Abstract ..... 5

1. Introduction ..... 6
2. Size of fauna ..... 6
3. Survey and detection ..... 7
4. Abundance and rarity ..... 8
5. Taxonomic distinctiveness ..... 9
6. Biology and ecology ..... 10
6.1 Paradoxaphis plagianthi ..... 10
6.2 Host plants ..... 12
6.3 Reproduction ..... 12
6.4 Seasonality ..... 13
6.5 Patchy distributions ..... 13
7. Natural enemies ..... 13
8. Threats to survival ..... 15
8.1 Habitat destruction ..... 15
8.2 Displacement by introduced aphids ..... 15
8.3 Attack from introduced parasitoids and predators ..... 15
8.4 Climate change ..... 16
9. Acknowledgements ..... 16
10. References ..... 16
Appendix 1. Species summaries ..... 18

# Status of New Zealand indigenous aphids, 2002 

D.A.J. Teulon ${ }^{1}$, M.A.W. Stufkens ${ }^{1}$, C.D. von Dohlen ${ }^{2}$ and J. Kean ${ }^{3}$<br>${ }^{1}$ New Zealand Institute for Crop \& Food Research Ltd, Private Bag 4704, Christchurch, New Zealand<br>${ }^{2}$ Department of Biology, Utah State University, Logan, UT 84322, USA<br>${ }^{3}$ Biocontrol \& Biosecurity Group, AgResearch Ltd, PO Box 60, Lincoln, New Zealand


#### Abstract

This report updates current knowledge of the New Zealand indigenous aphid fauna. Of the approximately 120 aphid species in New Zealand only about 13 are indigenous. These include: Aphis coprosmae, A. cottieri, A. bealyi, A. nelsonensis, Aphis sp. (on Olearia), Paradoxaphis aristoteliae, P. plagianthi, Casimira sp. (on Ozothamnus), Euschizaphis sp. (on Dracophyllum), Euschizaphis sp. (on Aciphylla), Neophyllaphis totarae, Neophyllaphis sp. (on Podocarpus nivalis) and Sensoriaphis nothofagi. There is also evidence for the existence of several other species.

New Zealand indigenous aphids constitute a distinctive component of the world aphid fauna and New Zealand fauna, with species belonging to Neophyllaphidinae, Taiwanaphidinae and Aphidinae (Aphidini). Some species have Gondwanan distributions and exhibit primitive features. At least one genus is endemic and another now comprises half the known world species. Recent molecular work places a group of native species as central to the global evolution of the species-rich Aphidinae. There has been very little published work on the biology or ecology of New Zealand indigenous aphids except for recent work on Paradoxaphis plagianthi. Native aphids appear to be predominantly host-specific, at least to host plant genera. Sexual forms have been found for some species but not others. For some species, the presence of sexual morphs during spring and summer suggests that the structure of their life cycle allows the egg stage to overcome summer conditions. One characteristic of some Aphis/Paradoxaphis species is their very patchy distributions.


Threats to their continued survival arise from habitat destruction, displacement by introduced aphids, and attack from introduced parasitoids and predators. The relative importance of these threats has yet to be determined.

Keywords: indigenous aphids, Aphis spp., Paradoxaphis plagianthi, Casimira sp., Euschizaphis spp., Neophyllaphis spp., Sensoriaphis sp., distribution, biology, taxonomy, rarity, threats

## 1. Introduction

Of the approximately 120 aphid species in New Zealand, less than $10 \%$ are thought to be indigenous or native. Apart from the need to document these indigenous species, increased scientific interest in this insect group in recent years has focused on:

- investigating the impacts of introduced biological control agents on the indigenous fauna,
- exploring factors leading to the rarity of these and other organisms,
- elucidating the evolution and biogeography of aphids in a global context.

Consequently, more intensive field surveys have been done and the existence of at least seven new native species has been confirmed or discovered since 1997 (Teulon et al. 2002). There is also evidence for the existence of several other species and it is likely that there are still some undiscovered species.

This report summarises current knowledge of the New Zealand indigenous aphid fauna and is an update of a previous report (Teulon \& Stufkens 1998). It lists the described, undescribed and suspected indigenous species found in New Zealand, and details their taxonomic status and uniqueness. It also summarises the small amount of available information on their biology and ecology, and describes the status of populations presently found in New Zealand along with the effort spent finding them. Finally, it lists potential threats to their continued survival. Appendix I provides detailed information on each species.

## 2. Size of fauna

Only eight indigenous species of aphid have been fully described and named (Table 1), and a further four species are being described (Table 2).

TABLE 1. NEW ZEALAND INDIGENOUS APHIDS: DESCRIBED SPECIES AND THEIR HOST PLANTS.

| APHID SPECIES | HOST PLANT | REFERENCE |
| :--- | :--- | :--- |
| Aphis coprosmae Laing ex Tillyard | Coprosma spp. | Tillyard 1926 |
| Aphis cottieri Carver | Muehlenbeckia spp. | Carver 2000 |
| Aphis healyi Cottier | Carmichaelia spp. | Cottier 1953 |
| Aphis nelsonensis Cottier | Epilobium sp. | Cottier 1953 |
| Paradoxaphis aristoteliae Sunde | Aristotelia sp. | Sunde 1987 |
| Paradoxaphis plagianthi Eastop | Plagianthus sp. | Eastop 2001 |
| Neophyllaphis totarae Cottier | Podocarpus spp. | Cottier 1953 |
| Sensoriaphis nothofagi Cottier | Nothofagus spp. | Cottier 1953 |

TABLE 2. NEW ZEALAND INDIGENOUS APHIDS: undescribed species and Their host plants.

| UNDESCRIBED SPECIES | HOST PLANT |
| :--- | :--- |
| Aphis sp. | Olearia spp. |
| Casimira sp. | Ozothamnus sp. |
| Euschizaphis sp. | Aciphylla spp. |
| Euschizaphis sp. | Dracophyllum spp. |
| Neophyllaphis sp. | Podocarpus nivalis |

One described species that was first found in New Zealand, Thripsaphis foxtonensis Cottier (1953), is now thought to be an introduced species because it has no close relatives in New Zealand (V.F. Eastop pers. comm.).

The endemism of the New Zealand Casimira sp. is also questionable. While the host plant of Casimira sp. (Ozothamnus leptophylla) is a true New Zealand endemic, it has no close relatives in New Zealand, only in Australia. In the field, Casimira sp. is always found in the presence of Brachycaudus belichrysi, and in the laboraty, it struggles on its host plant without B. helichrysi (M.A.W.S. unpubl. data). Casimira sp. might be a relatively recent introduction of an Australian species (not detected there) that has managed to survive on a New Zealand relative of its native host (V.F. Eastop, pers. comm.).

One specimen of an Aphis species collected from Hebe (probably H. elliptica) resembles the Aphis species on Coprosma and Olearia, but more specimens from Hebe are required to confirm that this is a new native species. A number of unidentified aphid specimens that are also possibly native to New Zealand have been found on indigenous plants.

The confounding effects of few and limited aphid surveys, and rarity and taxonomic uncertainty about indigenous aphids, lead specialists to believe that more species remain to be discovered in New Zealand (D.F. Hales. pers. comm.; V.F. Eastop, pers. comm.).

## 3. Survey and detection

The first indigenous aphids recorded, Aphis coprosmae and Neophyllaphis totarae, were collected in the 1920s. Neophyllaphis totarae was initially thought to be Neophyllaphis podocarpi from Japan (Cottier 1953). There was speculation that New Zealand had no indigenous aphids and that the one apparently indigenous species (A. coprosmae) would eventually be found to be introduced (Cottier 1953). This view may have discouraged any serious collection of indigenous aphids in New Zealand until 1953, when Cottier published his seminal book, Aphids of New Zealand (Cottier 1953), which contained six indigenous species, including the descriptions of four new species.

There was some spasmodic collecting of indigenous aphid species between 1920 and 1970 (see Teulon \& Stufkens 1998). A.J. Healy found two new species (Aphis healyi and $A$. nelsonensis) and W. Cottier was actively collecting N. totarae. A further new species (Sensoriaphis nothofagi) was found by J.M. Dingley in 1947. Based on information found in his unpublished correspondence, A.D. Lowe carried out some surveys for indigenous aphids in the 1960s. During the 1970 s and 1980s a considerable amount of aphid collecting was carried out by a number of entomologists (see Teulon \& Stufkens 1998), including collections by foreign scientists, among them the world renowned aphidologist V.F. Eastop, who visited New Zealand on several occasions. These scientists contributed significantly to the discovery of several new species.

Only two species, N. totarae and S. nothofagi, have been regularly collected since they were first discovered. Lack of collection records for other species provides some indication of their rarity. This is reinforced by anecdotal evidence on some species. Two researchers intimately associated with the discovery of $A$. bealyi, A. nelsonensis (A.J. Healy) and Paradoxaphis aristoteliae (R. Sunde) have both commented to David Teulon that they carried out a reasonable amount of surveying for their respective species but with very little success.

Since 1993, Crop \& Food Research's Entomology Group has carried out regular surveys for indigenous aphids to include in quarantine tests for introduced aphid parasitoids (e.g. Stufkens \& Farrell 1994). These surveys reinforced previous perceptions that only two species, $N$. totarae and S. nothofagi, were relatively common. However, results of more recent surveys (1997 to present) indicate that two further species, the Euschizaphis sp. on Dracophyllum and perhaps $A$. healyi, can be added to this group. The known geographical distribution of $A$. cottieri has also significantly increased.

There appear to be few reports of native aphids found in surveys for flying aphids in crop areas (Lowe 1968; D.A.J. Teulon \& M.A.W Stufkens, unpubl. data).

## 4. Abundance and rarity

Kean \& Barlow (unpubl. report) developed a system for characterising the abundance and rarity of species based on their presently known geographical distribution and local abundance within that range. The system consists of a matrix of four categories with species defined as common, sparse, localised and scarce. We have used this system to categorise indigenous aphids based on our current knowledge.

Scarce: Restricted range and low local abundance.

- The majority of New Zealand native aphids fits into this category, but for some species this may reflect a lack of data.
- Of the recognised species, the rarest aphid is $A$. nelsonensis, which has not been recorded since 1965 , followed by $A$. coprosmae, of which only two-three populations have been recorded, and none since 1998.
- The Casimira species on Ozothamnus has only been found at one location, in the Catlins, Southland.
- Paradoxaphis aristoteliae has been found at both ends of the South Island but, despite some effort, no further populations have been located.
- Current data on the Aphis sp. on Olearia, the Euschizaphis sp. on Aciphylla, and the Neophyllaphis sp. on P. nivalis are limited due to their recent discovery. It is therefore difficult to draw any definite conclusions on their relative abundance.

Localised: Narrow distribution but high local abundance.

- Paradoxaphis plagianthi may be moderately abundant, but only in the Christchurch area.
- Aphis cottieri on Mueblenbeckia has been recorded from relatively few locations but in appreciable numbers. The geographical separation of records for this aphid (Fiordland to Canterbury) suggests that more populations are likely to be found.

Sparse: Widespread but with low local abundance.

- S. nothofagi and the Euschizaphis sp. on Dracophyllum are relatively widespread but populations seldom reach high levels.
Common: Broad distribution and high abundance.
- N. totarae is widespread with sometimes high local abundance.
- A. bealyi on Carmichaelia now seems to be more common than was previously thought, with populations being recorded recently in Otago, Southland, Westland, and the central North Island.
Only A. healyi, Euschizaphis (Dracophyllum), N. totarae, and S. nothofagi have been found in the North Island. The greater representation of native species in the South Island may reflect the relative amount of sampling effort in each island.


## 5. Taxonomic distinctiveness

The Aphidoidea (aphids, phylloxerids, adellgids) form predominantly a northern temperate group. The total number of New Zealand aphids is small relative to the number found in Northern Hemisphere areas of comparative size. However, it is now apparent that New Zealand indigenous aphids constitute a distinctive component of both the world aphid fauna and the New Zealand fauna.

Three aphid sub-families are represented in New Zealand: Neophyllaphidinae (two spp.), Taiwanaphidinae (one sp.) and Aphidinae (ten spp.). New Zealand Aphidinae putatively belong to the tribe Aphidini. None of the indigenous aphids identified to date (2003) belongs to the other two Aphidinae tribes, Macrosiphini or Pterocommatini.

The following are some significant characteristics of the New Zealand aphid fauna:

- Neophyllaphis and Sensoriaphis are both primitive genera with Gondwanan distributions (Carver et al. 1991). The morphology of the genus Neophyllaphis closely matches one of the few, oldest (Upper Cretaceous) aphidid fossils. The life cycle of extant Neophyllaphis is believed to resemble that of the common aphid ancestor (Heie 1981).
- Paradoxaphis appears to be endemic to New Zealand (Sunde 1987; Remaudière \& Remaudière 1997).
- Casimira might be a southern endemic genus. The type species, C. canberrae, is native to Australia, and the only other nominal species was described from India. However, the validity of the generic designation of this second species, C. bhutanensis, has been questioned (V.F. Eastop, pers. comm.).
- The recent characterisation of the two New Zealand Euschizaphis species now means that half the known species of this genera are found in New Zealand.
- Accepted dogma is that the southern Aphidinae (i.e. Aphis, Paradoxaphis, Euschizaphis, Casimira) are descendants of recent chance trans-tropical immigrants from the Northern Hemisphere (Eastop 2001; von Dohlen \& Teulon 2002). However, recent molecular work has found that a group of four New Zealand endemic aphids belonging to the genera Aphis and Paradoxaphis form a highly supported lineage (possibly basal in the tribe Aphidini) estimated to be c. 15-30 million years old (Fig. 1). These results place this New Zealand group as central to the evolution of the species-rich Aphidinae, which contains many agricultural pests (von Dohlen \& Teulon 2002).


## 6. Biology and ecology

There has been very little published work on the biology or ecology of New Zealand indigenous aphids (Cottier 1953; Sunde 1987; Blackman \& Eastop 1994) except for recent work on Paradoxaphis plagianthi (Kean 2002). The life histories of all other native aphids require in-depth study.

### 6.1 Paradoxapbisplagiantbi

This species was studied between 1999 and 2002 in a project examining the population dynamics of rarity. The following is a summary of some of the work carried out in this project (Kean 2002; Kean, unpubl. data). The main host of Paradoxaphis plagianthi is the ribbonwood (Plagianthus regius), but the aphid was sometimes found on young jasmine vines (Parsonsia heterophylla) beneath ribbonwood trees in late spring. Under laboratory conditions, Paradoxaphis plagianthi can also complete its development on Hoheria


Figure 1. Results of combined maximum parsimony analysis of EF1a and tRNA leucine/COII sequences for the tribe Aphidini (von Dohlen, unpubl. data).
angustifolia, a close relative of its main host. The significance of these hosts for the persistence of this aphid is not understood. No oviparae, males or eggs have been observed for this aphid. Wingless female adults were present year round while winged female aphids were most common in late spring (Fig. 2). The species was most common in spring, with low population size over summer associated with a decline in leaf quality, dispersal of winged forms and increasing abundance of natural enemies. This aphid overwintered on plump


Figure 2. Dynamics of two large Paradoxophis plagianthi colonies studied at Riccarton Bush.
leaf and flower buds. Natural enemies included predators such as spiders, ladybirds, lacewings, hoverflies and possibly mites. It was sometimes attacked by a parasitoid wasp and Entomopthora fungus. While local colonies sometimes reached high population sizes, local extinctions were frequent, especially in summer. It is likely that the persistence of this species relies on a delicate balance between colonisation and local extinction rates.

### 6.2 HOST PLANTS

Based on present data, all New Zealand indigenous aphid species appear to be host-specific to plant genera. Some aphid species have been found on a number of plant species from the same genera (see Appendix I). P. plagianthi has also been found on Parsonsia beterophylla but only in close proximity to its main host, Plagianthus regius (see above).

### 6.3 REPRODUCTION

Parthenogenetic viviparous females have been recorded for most species. For some sparsely collected species, winged morphs have not been recorded (see Appendix 1), but these would be expected to be found in a sizeable population.

The presence of sexual morphs (oviparae, male) and eggs indicates that sexual reproduction is likely to take place. Wingless oviparous females have been recorded for S. nothofagi (Cottier 1953), N. totarae, A. cottieri, the Aphis sp. on Olearia (in the laboratory), P. aristoteliae (in the laboratory) and the Euschizaphis sp. on Dracophyllum. The oviparae of $N$. totarae are winged (Cottier 1953), whereas the oviparae for the Neophyllaphis on P. nivalis are wingless (M. Carver, pers. comm.). Winged males have been recorded for S. nothofagi and N. totarae (Cottier 1953).

Eggs have been recorded for only A. coprosmae (Tillyard 1926), A. cottieri (in the laboratory), the Aphis sp. on Olearia (in the laboratory), P. aristoteliae (in the laboratory), the Euschizaphis sp. on Dracophyllum (in the laboratory), and the Neophyllaphis sp. on P. nivalis (D.F. Hales, pers. comm.). Sexual morphs have all been found on the same host plant as the viviparous morphs, indicating a lack of host alternation (heteroecy).

### 6.4 SEASONALITY

As only $P$. plagianthus has been studied in any detail, there is very little information concerning the seasonality of most species. Most records are of winged and wingless parthenogenetic forms in spring, summer, and autumn months. The presence of oviparae and eggs in autumn and winter (e.g. $A$. coprosmae, A. cottieiri, Aphis on Olearia) suggests that these species overwinter as eggs, a common feature of most aphid species in temperate latitudes. Parthenogenetic morphs of at least one species ( $P$. plagianthi) have been found throughout the winter.

The occurrence of oviparous females (and for some species males) of N. totarae, Neophyllaphis on P. nivalis, S. nothofagi and Euschizaphis on Dracophyllum in spring and summer (Cottier 1953; Blackman \& Eastop 1994, and various unpubl. data) suggests that the life cycles of these species are structured to allow the egg stage to overcome summer conditions. This occurs in Neophyllaphis and Sensoriaphis species in Australia (Carver \& Hales 1974; Hales 1976).

### 6.5 PATCHY DISTRIBUTIONS

One characteristic of the Aphis/Paradoxaphis group is their patchy distribution. A number of species in this group (e.g. A. coprosmae, P. aristoteliae) are usually found inhabiting only a few host plants (sometimes only one) in a small area with surrounding host plants uninhabited.

## 7. Natural enemies

There has been relatively little research on the natural enemies (predators, parasitoids, pathogens) of native aphids. Table 3 provides a summary of available information for each species. For the most-studied species, P. plagianthi, the assortment of natural enemies (Table 3) was not thought to exert a major impact on the populations studied (J. Kean, pers. comm.).

A project is under way to document, collect and identify the hymenopteran parasitoids of all native aphids (Teulon \& Stufkens, unpubl. data). Several native aphid populations have been observed with very high levels of parasitism

TABLE 3. SUMMARY OF NATURAL ENEMIES FOR THE MAIN NATIVE APHID SPECIES.

| APHID SPECIES | COMMENTS |
| :---: | :---: |
| Aphis coprosmae | Aphids of the last known population near Lake Rotoroa, Nelson Lakes, were found to be heavily parasitised by unidentified aphelinid and aphidiine parasitoids in February 1997. |
| Aphis cottieri | Spiders, and sometimes ladybirds, syrphids, and lacewings, have been observed in large numbers with aphids at Kaitorete Spit. A small number of mummified aphids have also been collected from Kaitorete Spit and identified as being conspecific or closely related to Aphidius ervi (Carver 2000). |
| Aphis healyi | Dark brown mummies were collected in January 1998 from the Hokonui Hills (Southland). In January 2002, a population on the Lake Christabel Track, Blue Grey River, was heavily parasitised. |
| Aphis nelsonensis | Unknown. |
| Aphis sp. (Olearia) | Mummified aphids have been collected. |
| Paradoxaphis aristoteliae | Brown mummies were found in January 1997 and 1998 from samples at Dolamore Park. |
| Paradoxaphis plagianthi | Natural enemies include spiders, ladybirds, lacewings, hoverflies and possibly mites. A parasitoid wasp and Entomopthora fungus have also been observed. |
| Casimira sp. (Ozothamnus) | Lacewings, ladybirds and spiders. |
| Euschizaphis (Aciphylla) | A population at Porters Pass was heavily parastised by an unidentified parasitoid in 2001. |
| Euschizaphis (Dracophyllum) | Black mummies have been found at most sites. External mummies were observed in the North Island. |
| Neophyllaphis totarae | A presumed-to-be indigenous parasitoid with an external mummy is found throughout New Zealand. An Auckland population was heavily parasitised in 1983. |
| Neophyllaphis (P. nivalis) | Unknown. |
| Sensoriaphis nothofagi | Ladybirds and syrphid larvae. |

(Table 3) so it seems likely that parasitoids can be an important factor in aphid mortality in some circumstances.

We are in the process of identifying these parasitoids. Except for the presumed-to-be endemic parasitoid on $N$. totarae, very few parasitoids have been identified accurately. There are not many world authorities for this group, and we have had difficulty in arranging a suitable expert to view our specimens. It is likely that a number of these parasitoid species are endemic to New Zealand.

However, we suspect that at least some of the parasitoids attacking native aphids are species intentionally introduced for the control of pests species. Others may have been accidental introductions. Carver (2000) identified a small number of parasitoids attacking A. cottieri as being conspecific or closely related to Aphidius ervi. At least one introduced hyperparasitoid* has been reported attacking a parasitoid of $N$. totarae in the field (Valentine 1975).

[^0]
## 8. Threats to survival

New Zealand indigenous aphids face a number of threats to their continued survival. The relative importance of these threats has yet to be determined.

### 8.1 HABITAT DESTRUCTION

This includes major disruption in the form of the complete removal of habitat and host plants, as well as less obvious destruction in the form of animals browsing the young growing shoots of aphid host plants, which are the preferred habitat for some aphid species (e.g. A. healyi on Carmichaelia). Even small-scale habitat destruction may be detrimental to aphid species in the Aphis/Paradoxaphis group because of their patchy and highly aggregated distribution. The removal of one plant may bring about the destruction of the only aphid population in a given area.

### 8.2 DISPLACEMENT BY INTRODUCED APHIDS

The 100 or so introduced aphid species in New Zealand constitute a considerable proportion of the 1000 total insect invaders of New Zealand (Teulon \& Stufkens 2002). The ratio of alien to indigenous aphid species is extremely high (8:1 in 2002) (Teulon \& Stufkens 2002). A number of indigenous aphid species may be threatened as a result of displacement from their host plants by introduced species. For example, A. nelsonensis, which has not been recorded for over 30 years, may have been displaced on Epilobium by Aphis nr. epilobii.

### 8.3 ATTACK FROM INTRODUCED PARASITOIDS AND PREDATORS

Indigenous aphids may be threatened by attack from alien parasitoids and predators, including vespid wasps. At least one introduced aphid predator, Coccinella unidecimpunctata, is reported to have displaced its indigenous counterpart, C. leonina, in many areas of New Zealand (Watts 1986), and it probably includes indigenous aphids amongst its prey. A number of introduced parasitoids have been found to attack and kill several indigenous aphid species in the laboratory (Stufkens \& Farrell 1994; Teulon \& Stufkens, unpubl. data) and an introduced parasitoid, Aphidius ervi, appears to attack A. cottieri in the field (Carver 2000). We are currently investigating other possible instances of attack by introduced parasitoids on native aphid species.

### 8.4 CLIMATE CHANGE

Climate change represents a significant threat to global biodiversity and ecosystem integrity, including New Zealand indigenous aphid species and their host plants. For example, P. plagianthi may be susceptible to increasing temperatures, as it is killed by constant temperatures of $25^{\circ} \mathrm{C}$ in the laboratory (J. Kean, unpubl. data).

## 9. Acknowledgements

We thank V.F. Eastop (Natural History Museum, London), D.F. Hales (Macquarie University, Sydney), A.J. Healy (Christchurch, New Zealand), and R. Sunde (Auckland), for valued input into this and the earlier report.

## 10. References

Blackman, R.L.; Eastop, V.F. 1994: Aphids on the world's trees: an identification guide. CAB International, Wallingford, UK.

Carver, M. 2000: A new indigenous species of Aphis Linnaeus (Hemiptera: Aphididae) on Muehlenbeckia (Polygonaceae) in New Zealand. New Zealand Entomologist 22: 3-7.

Carver, M.; Gross, G.F.; Woodward, T.E. 1991: Hemiptera. Chapter 30. Pp. 429-500 (Vol. 1) in: CSIRO (ed.) The insects of Australia. A textbook for students and research workers. Melbourne University Press, Carlton, Victoria.

Carver, M.; Hales, D. 1974: A new species of Sensoriaphis Cottier, 1953 (Homoptera: Aphididae) from New South Wales. Journal of Entomology (B) 42: 113-125.

Cottier, W. 1938: The aphid Aphis coprosmae Laing from New Zealand. New Zealand Journal of Science and Technology 20 B: 115-118.

Cottier, W. 1953: Aphids of New Zealand. New Zealand DSIR bulletin 106.
Crosby, T.K.; Dugdale, J.S.; Watt, J.C. 1976: Recording specimen locations in New Zealand: an arbitrary system of areas and codes defined. New Zealand Journal of Zoology 3: 69.

Dent, D. 1991: Insect pest management. CAB International, Wallingford, UK.
Dohlen, C.D. von; Teulon, D.A.J. 2003: Phylogeny and historical biogeography of New Zealand indigenous aphidini aphids (Hemiptera: Aphididae). Annals of the Entomological Society of America 96: in press.
Eastop, V.F. 2001: A new native Paradoxaphis Sunde (Hemiptera: Aphididae) from New Zealand. New Zealand Entomologist 24: 11-13.

Hales, D.F. 1976: Biology of Neophyllaphis brimblecombii Carver (Homoptera: Aphididae) in the Sydney region. Australian Zoologist 19: 77-84.

Heie, O.E. 1981: Morphology and phylogeny of some Mesozoic aphids (Insecta: Hemiptera). Entomologica Scandinavica Supplement 15: 401-415.

Kean, J. 2002: Population patterns of Paradoxaphis plagianthi, a rare New Zealand aphid. New Zealand Journal of Ecology 26: 95-99.

Lowe, A.D. 1966: Some records of aphids including six species not previously recorded from New Zealand. New Zealand Journal of Science 9: 357-60.

Lowe, A.D. 1968: Alate aphids trapped over 8 years at two sites in Canterbury, New Zealand. New Zealand Journal of Agricultural Research 11: 829-47.
Miller, D. 1925: Forest and timber insects of New Zealand. New Zealand State Forest Service Bulletin 2.

Molloy, J.; Davis, A. 1994: Setting priorities for the conservation of New Zealand's threatened plants and animals. Department of Conservation, Wellington.

Remaudière, G.; Remaudière, M. 1997: Catalogue of the world's Aphididae. INRA, Paris.
Ross, A. 2001: Rare aphid found. Quail Island News 8: 4.
Stufkens, M.A.W.; Farrell, J.A. 1994: Quarantine host range tests on two exotic parasitoids imported for aphid control. Proceedings of the 47 th New Zealand Plant Protection Conference: 149-153.

Sunde, R.G. 1973: New records of Aphidoidea (Homoptera) in New Zealand. New Zealand Entomology 5: 127-130.

Sunde, R.G. 1979: New descriptions of Sensoriaphis nothofagi (Homoptera: Aphididae). New Zealand Journal of Zoology 6: 57-59.

Sunde, R.G. 1987: A new indigenous aphid from New Zealand (Homoptera: Aphididae). New Zealand Journal of Zoology 14: 587-592.

Teulon, D.A.J.; Stufkens, M.A.W. 1998: Current status of New Zealand indigenous aphids. Conservation Advisory Science Notes 216. Department of Conservation, Wellington.

Teulon, D.A.J.; Stufkens, M.A.W. 2002: Biosecurity and aphids in New Zealand. New Zealand Plant Protection 55: 12-17.

Teulon, D.A.J.; Stufkens, M.A.W.; von Dohlen, C.D.; Kean, J.M. 2002: New Zealand native aphids. New Zealand Plant Protection 55: 436.

Tillyard, R.J. 1926: The insects of New Zealand. Angus \& Robertson Ltd, Sydney.
Valentine, E.W. 1975: Additions and corrections to Hymenoptera hyperparasitic on aphids in New Zealand. New Zealand Entomology 6: 59-61.

Watts, J.C. 1986: Beetles (Coleoptera) of the off-shore islands of northern New Zealand. Pp. 221-228 in: Wright, A.E.; Beever, R.E. (eds) The offshore islands of northern New Zealand. Department of Lands and Survey Information Series 16.

## Appendix 1

## SPECIES SUMMARIES

## Apbis coprosmae Laing ex Tillyard Aphidinae

Host plant(s): Coprosma rigida, C. crassifolia

Description: Medium sized ( 1.6 mm ) aphids, usually completely covered in fluffy white wax, which is also deposited on the branches inhabited by the aphids.
Morphs: Eggs, winged and wingless viviparous females
First record: 1922 on C. rigida near Nelson by A. Philpott and R.J. Tillyard
Plant part: On twigs near growing tips

Distribution*:
Aniseed Valley
Lake Rotoroa

NZAC Boundaries
Nelson (NN)
Buller (BR)

DOC Conservancies
Nelson-Marlborough
Nelson-Marlborough

## Land status of collection sites:

Aniseed Valley: Transit NZ
Lake Rotoroa: Nelson Lakes National Park
Natural enemies: Coprosma aphids on a single plant near Lake Rotoroa, Nelson Lakes, were found to be heavily parasitised by unidentified aphelinids (black mummies) and aphidiines (brown mummies) in February 1997.

Rarity: Only two or three populations of this aphid have been observed in the field: one in the Aniseed Valley (near Nelson) in 1922/23 (Tillyard 1926; Cottier 1938, 1956), and again in the Aniseed Valley from 1993 to 1997, and one near Lake Rotoroa (Nelson Lakes) from 1997 to 1999. At present there are no known populations. In each case the aphid was found on only one plant, even though similar plants of the same species were close by. M.A.W. Stufkens has carried out regular searches for this aphid from 1993 to the present in the North and South Islands with only two populations (see above) being discovered.

Notes: According to Tillyard (1926) this species lays large, dark gray, oval eggs in rows along the stem of the plant; these hatch in September, producing black larvae. Winged adults have been found in December and February and wingless adults in December to March. The original record was from C. rigida whereas the two recent collections of this aphid have been from C. crassifolia.

The collection dates for this species in Cottier (1953) appear to be incorrect. Cottier (1953) states that the Aniseed Valley collections were made on 3 Dec 1933, but specimen slides in the New Zealand Arthropod Collection, Auckland, and the Natural History Museum, London, only indicate 23 Mar 1922 and 3 Dec 1923 for collections. Cottier (1938) lists the collection dates as 1922/23. Presumably the dates on the specimens are correct.

[^1]

were found on Carmichaelia shrubs covering about 1.5 acres ( 0.6 ha), A.J. Healy states that the aphids were not common; while working on nasella tussock in North Canterbury between 1944 and 1978 he kept 'an eye out for the aphid', although he was not actively searching for it (A.J. Healy 1998, pers. comm.). He observed the aphid only once more during this time on a single plant in November 1969 by the Charwell River bridge on the inland Kaikoura Road. There are also specimens collected by R.J. McKenzie on Carmichaelia in Eyrewell in 1958.

Between 1993 and 1998 M.A.W. Stufkens and co-workers revisited all of A.J. Healy's sites on several occasions, as well as many other sites throughout New Zealand, specifically to find the aphid, but without success. In January 1998, however, M.A.W. Stufkens rediscovered A. healyi on several plants in a patch of C. australis (approx. 0.25 ha ) in the Hokonui Hills in Southland. A few days later he also found this aphid on one small C. australis plant close to the road in the Crown Range, Central Otago, after searching many plants in the area. In November 1998 the aphid was found on C. australis at Hihitahi in the central North Island. A heavily parasitised population was found on C. odorata in the Blue Grey River, Westland, in January 2002.

Notes: Both winged and wingless adults have been collected from November to February and May.

Specimen(s): Crop \& Food Research, Lincoln
New Zealand Arthropod Collection, Auckland
Natural History Museum, London

## Aphis nelsonensis Cottier Aphidinae

Host plant(s): Epilobium sp.
Description: Small aphid (c. 1.3 mm long)
Morphs: Winged and wingless viviparous females
First record: 1946 from Whangamoa Saddle, Nelson, by A.J. Healy (Cottier 1953).

Plant part: Leaves and stems

Distribution:
Whangamoa Saddle
Cass

NZAC Boundaries
Nelson (NN)
Mid Canterbury (MC)

DOC Conservancies
Nelson-Marlborough

Land status of collection sites: Unknown
Natural enemies: Unknown
Rarity: This aphid has been collected on only two occasions, once by A.J. Healy about a mile from the summit, Whangamoa Saddle, between Rai Valley and Nelson, at an altitude of about 900 feet ( 270 m ) in November 1946 (Cottier 1953); and once by A.D. Lowe from Cass, Canterbury, in January 1965 (Natural History Museum, London). The aphid has not been seen since, despite concerted efforts to find it by M.A.W. Stufkens between 1993 and 2000.

Notes: Winged adults have only been collected in January and wingless adults in January and November.

The Epilobium species could not be identified by A.J. Healy because the leaves and stems were so badly malformed due to the presence of the aphid (Cottier 1953), and the host plants from A.D. Lowe's collections were not identified to the species level either (Natural History Museum, London).

Cottier (1953) records that the original collection of this aphid was on 25 November 1946 in Nelson by A.J. Healy (see above) although slides in both the New Zealand Arthropod Collection and the Natural History Museum indicate that the location for aphids collected on this date by A.J. Healy was Blenheim. It appears that the slides were labelled incorrectly. A.J. Healy (pers. comm. 1998) stated that the original collections were made on 25 Nov 1946 in Nelson, as described in Cottier (1953), and that he did not collect any A. nelsonensis in Blenheim.

In recent aphid surveys of Epilobium, another aphid species, the introduced Aphis nr epilobii, is the only species that has been found. This species was first observed in New Zealand in 1962 (Lowe 1966) and has possibly displaced A. nelsonensis on Epilobium.

Specimen(s): New Zealand Arthropod Collection, Auckland Natural History Museum, London

References: Cottier (1953), Lowe (1966)

## Aphis sp.

Aphidinae
Host plant(s): Olearia odorata, O. bullata
Description: Similar to A. coprosmae but without extensive white fluff
Morphs: Eggs and oviparous females in laboratory colonies. Wingless and winged viviparous females.

First record: Collected by Jose Derraik in March 1999 from O. bullata (and Coprosma propinqua) Brookdale, Rock and Pillar Range, Central Otago
Plant part: Growing tips of new shoots

Distribution:
Brookdale, Rock \& Pillar Range
Omarama Stm Central Otago (CO) Otago

Land status of collection sites: Both private (?) farmland
Natural enemies: Mummified aphids have been collected but the parasitoids have not yet been identified

Rarity: This aphid was only recently discovered and is known from only two locations in the South Island. Return visits to these sites have confirmed resident populations. There has been no searching for this aphid at other sites to date.

Specimen(s): Crop \& Food Research, Lincoln

## Apbis sp.

Aphidinae
Host plant(s): Hebe ?elliptica
Description: Unknown
Morphs: Only one wingless female
First record: 1972 on Hebe ?elliptica near Greymouth by V.F. Eastop
Plant part: Unknown
Distribution: NZAC Boundaries DOC Conservancies
Greymouth Buller (BR) Nelson-Marlborough
Land status of collection sites: Unknown
Natural enemies: Unknown
Rarity: V.F. Eastop collected only one specimen, in October 1972 from Greymouth.

There is unlikely to have been much effort exerted on searching for this aphid before 1997. Since then, M.A.W. Stufkens has searched for this aphid on the West Coast on two occasions, without success.

Notes: As only one specimen was collected from Hebe there is some question as to whether this plant is its true host.

Specimen(s): Natural History Museum, London

## Aphis undescribed species

Aphidinae
Host plant(s): Samolus
Description: Unknown
Morphs: Unknown
First record: Punakaiki, Westland
Plant part: Unknown

Distribution:

## NZAC Boundaries

Punakaiki Westland

## DOC Conservancies

West Coast

Land status of collection sites:
Punakaiki: ?Paparoa National Park
Natural enemies: Unknown
Rarity: Only specimen collected. MAW Stufkens has searched for this aphid three times since January 1996, but without success.

Notes: V.F. Eastop has recently found these specimens. Initially he suspected they were the same species as that found on Ozothamnus, but after remounting they appear to be a 'proper Aphis' (i.e. not part of the New Zealand Aphis, Paradoxaphis, Casimira group) with marginal tubercles on abdominal segments 1 and 7 (V.F. Eastop pers. comm. 2002).

Specimen(s): Crop \& Food Research, Lincoln Natural History Museum, London

## Paradoxapbis aristoteliae Sunde

Aphidinae
Host plants:
Description: Reddish-brown black head and dusky thorax (Blackman \& Eastop 1994)

Morphs: Winged and wingless viviparous females. Wingless oviperae and eggs have been recorded in the laboratory

First record: 1982 from Aristotelia serrata, Dolamore Park, Gore, Southland, by C Butcher
Plant part: Leaves

Distribution:
Dolamore Park, Gore
L. Rotoroa, Nelson Lakes

## NZAC Boundaries

Southland (SL)
Buller (BR)

## DOC Conservancies

Southland
Nelson-Marlborough

## Land status of collection sites:

Dolamore Park: The trees are on Transit NZ land just outside the park
Lake Rotoroa: Nelson Lakes National Park
Natural enemies: Brown mummies, indicating parasitism, were found in January 1997 and 1998 from samples from Dolamore Park.

Rarity: This aphid has been recorded from only two places in New Zealand. It was collected in Dolamore Park, Gore, in 1982 and 1983 by C. Butcher and J. Butel and more recently from 1993 to 2000 by M.A.W. Stufkens. Since 1993 M.A.W. Stufkens has observed the aphid regularly in Dolamore Park, but it was almost always restricted to four plants. The second location at which this aphid has been recorded is Lake Rotoroa, Nelson Lakes, where it was collected in 1983 by A.K. Walker, R.G. Sunde and V.F. Eastop. M.A.W. Stufkens and coworkers (including V.F. Eastop on one occasion) have searched for this aphid in Nelson Lakes on a number of occasions from 1993 to 2000 but have not rediscovered the aphid in this area.
A. serrata shrubs growing in the Waitakere Ranges, 25 km west of Auckland, and in Christchurch, were examined on several occasions, but no specimens of this aphid were found (Sunde 1987). Since 1993 M.A.W. Stufkens has looked for this aphid in other areas throughout New Zealand on numerous occasions without success.

Notes: Collected from November to March.
Specimen(s): Crop \& Food Research, Lincoln
New Zealand Arthropod Collection, Auckland
Natural History Museum, London
MAF National Plant Pest Reference Laboratory, Auckland
References: Sunde (1987), Blackman \& Eastop (1994)

\section*{Paradoxapbis plagiantbi Eastop Aphidinae <br> Host plant(s): Plagianthus regius (formerly P. betulinus) <br> Populations have also been found on Parsonsia beterophylla <br> Description: Small to medium sized (1.3-2.0 mm) oval brown aphids with a median dorsal green strip on the abdomen <br> Morphs: Only winged and wingless viviparous females <br> First record: 1972 on Plagianthus regius in the Christchurch Botanic Gardens by V.F. Eastop and A.D. Lowe <br> Plant part: Buds, leaves and twigs near new growth and older leaves <br> | Distribution: | NZAC Boundaries | DOC Conservancies |
| :--- | :--- | :--- |
| Various Christchurch | Mid Canterbury (MC) | Canterbury |
| Lincoln | Mid Canterbury (MC) | Canterbury | <br> Land status of collection sites: <br> Chch City Council: Christchurch Botanic Gardens, Riccarton Bush, Ashgrove Reserve <br> Landcare Research: Canterbury Agricultural Science Centre, Lincoln <br> Univ. Canterbury: Ilam Homestead <br> Natural enemies: Natural enemies included predators such as spiders, ladybirds, lacewings, hoverflies and possibly mites. It was sometimes attacked by a parasitoid wasp and Entomopthora fungus. <br> Rarity: This aphid has been recorded infrequently until recently. A.D. Lowe (unpubl. correspondence) mentions a species collected from Plagianthus in Christchurch in August 1966, but no specimens can be found in any collections. It was collected again from Plagianthus in the Christchurch Botanic Gardens by V.F. Eastop and A.D. Lowe in 1972; a specimen from this date is found in the Natural History Museum, London. Apparently this was the same tree upon which the original aphid was found (V.F. Eastop, pers. comm.). A.D. Lowe revisited this tree regularly until he died in 1980 but did not record the aphid again (V.F. Eastop, pers. comm.). In January 1997, however, M.A.W. Stufkens along with V.F. Eastop rediscovered the aphid on what was probably the same tree described in the other records. It was found on it regularly until the tree was cut down in 2001. A few specimens were also caught in a malaise trap in Riccarton Bush, Christchurch, in late 1996, and several colonies have been found there since 1999. The aphid has also been found at a number of sites in Christchurch City (Ashgrove Reserve, Ilam Homestead, Christchurch Girls' High School). A population was artificially established on P. regius at Lincoln, Canterbury. In November 2000 sizeable populations of P. plagianthi were found on Parsonsia beterophylla in close proximity to $P$. regius in Riccarton Bush and in the Ashgrove Reserve. From 1999 to 2002 a research project was undertaken to examine the population dynamics of this aphid.}

Notes: Collection dates include most months of the year.
Specimen(s): Crop \& Food Research, Lincoln
Natural History Museum, London
Reference(s): Eastop 2001, Kean 2002

## Casimira undescribed species <br> Aphidinae

Host plant(s): Ozotbamnus leptopbylla (formally Casinia)
Description: Yellowish aphid with darker thorax
Morphs: Winged and wingless viviparous females
First record: 1994 in a malaise trap, Tautuku Bay, Catlins, by J. Ward
Plant part: Flower heads and dense compact growth

## Distribution:

Tautuku Bay, Catlins

NZAC Boundaries
Southland (SL) Otago

## Land status of collection sites:

Tautuku Bay: Tautuku Education Centre Campus
Natural enemies: Lacewings, spiders and ladybirds (M.A.W.S. unpubl. data)
Rarity: In February 1997 M.A.W. Stufkens identified the host plant of this species as Ozothamnus leptophylla. He found the aphid to be abundant in one small area (c. 1 ha) of the Education Centre Campus, Tautuku Bay, in the Catlins. It was not found on other Ozothamnus plants close by and has not been found in extensive surveys of other areas of the South Island.

Notes: Winged adults have been collected in December and January and wingless adults in October, December and January.

The endemism of the New Zealand Casimira sp . is questionable. The type species of this genus, C. canberrae, is native to Australia, and the only other nominal species was described from India. While the plant host of Casimira sp. (Ozothamnus leptophylla) is a true New Zealand endemic, it has no close relatives in New Zealand, only in Australia. In the field, Casimira sp. is always found in the presence of Brachycaudus belichrysi, and struggles on its host plant in the laboratory without B. belichrysi (M.A.W. Stufkens, unpubl. obs.). Casimira sp. might be a relatively recent introduction of an Australian species (not detected there), which has managed to survive on a New Zealand relative of its native host (V.F. Eastop, pers. comm.). Casimira might still constitute a southern endemic genus, since the validity of the generic designation of C. bhutanensis has been questioned (V.F. Eastop, pers. comm.).
V.F. Eastop (pers. comm.) no longer considers this to be the same species as that found on Samolus (see Aphis on Samolus).

Specimen(s): Crop \& Food Research, Lincoln
Natural History Museum, London

## Euscbizaphis undescribed species Aphidinae

Host plant(s): Aciphylla sp. including A. aurea
Description: Pale green
Morphs: Winged and wingless viviparous females
First record: 1983 from the Cardrona Valley, Central Otago, by J.M. Cox
Plant part: Leaf blades

| Distribution: | NZAC Boundaries | DOC Conservancies |
| :--- | :--- | :--- |
| Cadrona Valley | Central Otago (CO) or <br>  <br>  <br> Otago Lakes (OL) | Otago |
| Porters Pass | Mid Canterbury (MC) | Canterbury |
| Brookdale | Central Otago (CO) | Otago |

## Land status of collection sites:

| Otago: | Farmland |
| :--- | :--- |
| Porters Pass: | Farmland |
| Brookdale: | Farmland |

Natural enemies: The records in the Natural History Museum note that at least one specimen was parasitised. A population at Porters Pass was heavily parasitised by an unidentified parasitoid in 2001.

Rarity: This species was first recorded by J.M. Cox in January 1983. Between 1996 and 2001, M.A.W. Stufkens and co-workers searched the Cardrona Valley on two occasions and Aciphylla plants from many localities throughout the South Island, but did not find this species anywhere. However, in October 2001, S. Pawson found it on several Aciphylla aurea plants at Porters Pass. Aphids in these populations were also observed in November 2001 and March 2002. Another population was discovered at Brookdale in the Rock and Pillar Range, Central Otago, in March 2002.

Notes: At least four introduced aphid species (i.e. Cavariella aegopodii, Macrosiphum euphorbiae, Brachycaudus belichrysi, Myzus persicae) have been recorded from Aciphylla during the searches for the native species, and Cottier (1953) recorded five introduced aphid species on Aciphylla. Teulon (unpubl. data) found that most introduced aphids were found in the flowers of Aciphylla whereas the native species was found on the leaf blades.

Specimen(s): Crop \& Food Research, Lincoln
Natural History Museum, London

## Euscbizaphis undescribed species

Aphidinae
Host plant(s): Dracophyllum pronum, D. uniflorum, D. palustre, D. subulatum

Description: Large oval dark green aphid
Morphs: Wingless viviparous females, wingless oviparous females and eggs

First record: 1972 from Lake Sylvester (nr. Cobb Valley) by L.A. Mound
Plant part: Found on the leaves (needles)

Distribution:
Lake Sylvester
St James Walkway,
Lewis Pass end
Arthurs Pass
Otira Valley

NZAC Boundaries
Nelson (NN)
Buller (BR)

Mid Canterbury (MC)
Westland (WD)

DOC Conservancies
Nelson-Marlborough
West Coast

Canterbury
West Coast

| Distribution (continued): | NZAC Boundaries | DOC Conservancies |
| :--- | :--- | :--- |
| Porters Pass | Mid Canterbury (MC) | Canterbury |
| St Arnaud Range | Marlborough (MB ) | Nelson-Marlborough |
| Mt Isobel | Marlborough (MB) | Canterbury |
| Mt Ruapehu | Taupo (TO) | Tongariro-Taupo |
| Mt Ngaurahoe | Taupo (TO) | Tongariro-Taupo |
| Pureora Forest Park | Taupo (TO) | Waikato |
| Mt Egmont | Taranaki (TK) | Wanganui |

Land status of collection sites: Various, including Arthur's Pass National Park, Nelson Lakes National Park, Kahurangi National Park, Lake Sumner Conservation Park, Pureora Forest Park.

Natural enemies: Unidentified aphidiine have been reared from mummies at many sites. Parasitised aphids were found in appreciable numbers on two occasions. The Pureora population had parasitoids with external mummies.

Rarity: Not recorded since its discovery in 1972 until 1997/98 when M.A.W. Stufkens (with V.F. Eastop in 1997) carried out an extensive South Island survey. It is now known from a number of places in the South Island, but only north of Porters Pass, and in the North Island, and appears to be quite common.

Notes: Wingless forms of this species have been found from October to April. Winged forms have only been observed at the Pureura Forest Park site. Oviparae were found at Arthurs Pass in February 1997 and on Mt Ruapehu in November 1998. Eggs were laid on Dracophyllum in February in a laboratory culture at Lincoln. Found up to 4000 feet ( 1220 m ). The population at Pureora Forest Park has characters that suggest it may be a separate species.

Specimen(s): Crop \& Food Research, Lincoln
Natural History Museum, London

## Neopbyllaphis totarae Cottier Totara aphid Neophyllaphidinae

Host plants: Podocarpus totara, P. hallii, P. nivalis, P. acutifolia, P. waiboensis
[Records for $P$. nivalis are thought to relate to a separate species]
Description: Wingless morphs are dark purplish-brown, dusted with whitish powder, usually feeding singly on leaves or in small colonies on young twigs
Morphs: Winged and wingless viviparous females, winged oviparous females, winged males and eggs. M. Carver (pers. comm.) now considers the extensively glandulferous (wax-plate bearing) wingless viviparae as fundatrices and/or their descendants rather than a separate species as was previously reported (Teulon \& Stufkens 1998)

First record: Before 1925 from Westland by C.R. Foweraker (Miller 1925)
Plant part: Usually found singly on leaves or in small groups on young leaves and twigs (Cottier 1953)

| Distribution: | NZAC Boundaries | DOC Conservancies |
| :--- | :--- | :--- |
| Westland (various) | Westland (WD) | West Coast |
| Lake Matheson | Westland (WD) | West Coast |
| Lake Mapouriki | Westland (WD) | West Coast |
| Canavans Knob | Westland (WD) | West Coast |
| Nelson | Nelson (NN) | Nelson-Marlborough |
| Aniseed Valley, Nelson | Nelson (NN) | Nelson-Marlborough |
| Renwick | Marlborough (MB) | Nelson-Marlborough |
| Arthurs Pass | North Canterbury (NC) | Canterbury |
| Christchurch (various) | Mid Canterbury (MC) | Canterbury |
| Dunedin Botanical Garden | Dunedin | Otago |
| Totara Flat, Eglington R. | Otago Lakes (OL) | Southland |
| Auckland (various) | Auckland (AK) | Auckland |
| Waitakere Ranges | Auckland (AK) | Auckland |
| Mt Egmont | Taranaki (TK) | Wanganui |
| Palmerston North (various) | Wanganui (WI) | Wanganui |
| Hihitahi | Rangitikei (RI) | Wanganui |
| Taupo | Taupo (TO) | Tongariro-Taupo |
| Tongariro National Park | Taupo (TO) | Tongariro-Taupo |
| Pureroa State Park | Taupo (TO) | Wanganui |
| Mt Holdsworth | Wairarapa (WA) | Wellington |
| Silverstream, Hutt Valley | Wellington (WN) | Wellington |
| Rotorua | Bay of Plenty (BP) | Bay of Plenty |
| Kauaeranga, Coromandel | Coromandel (CL) | Waikato |
| Urewera National Park | Gisborne (GB) | East Coast-Hawke's Bay |

Land status of collection sites: Various including National Parks
Natural enemies: This aphid is parasitised by a species that is presumed to be indigenous. A putative description and name has been given to this parasitoid (Mackauer, unpubl. manuscript). It produces a whitish to light-brown mummy found beneath the host remains and has been found in the North and South Islands (NN, WD, AK). N. totarae was heavily parasitised by an aphidiine in Auckland in 1983 (V.F. Eastop, pers. comm.).

Rarity: A relatively common species found in the North and South Islands. It has been found consistently by a number of workers since first recorded in the 1920s.

Notes: Wingless parthenogenetic adults collected from September to April (winged: October to March). Winged oviparae and males are found in spring and summer (Blackman \& Eastop 1994).

This aphid infests its hosts sparsely. It does not seem to form large colonies. It is usually found singly on leaves or in small groups on young twigs (Cottier 1953). However, dense populations have been observed on new foliage (M.A.W.S. unpubl. data).

This species was initially thought to be the introduced $N$. podocarpi (see Miller 1925 and Cottier 1953), which is not found in New Zealand.

Specimen(s): New Zealand Arthropod Collection, Auckland
Natural History Museum, London
MAF National Plant Pest Reference Laboratory - Lincoln
References: Miller (1925), Cottier (1953), Blackman \& Eastop (1994)

## Neopbyllapbis undescribed species (Neophyllaphidinae)

Host plants: Podocarpus nivalis
Description: Similar to $N$. totarae
Morphs: Eggs, wingless oviparae and wingless viviparae
First record: February 1972 on P. nivalis at Arthurs Pass by D.F. Hales (née White)

Plant part: New growth and old leaves
Distribution: NZAC Boundaries DOC Conservancies

Arthur's Pass North Canterbury (NC) Canterbury
Land status of collection site:
Arthur's Pass National Park
Natural enemies: Unknown
Rarity: This putative species has only been found in a small area in Arthur's Pass and Otira

Notes: Collected by D.F. Hales (née White) from P. nivalis in Arthur's Pass at 3000 feet ( 910 m ) and later from the same area by M. Stufkens (December 2001, February 2002). Considered to be a separate species by M. Carver (pers. comm.), based on morphological characters, and by C. von Dohlen, based on molecular characters.

Specimens: Crop \& Food Research, Lincoln Australian National Insect Collection, Canberra

## Sensoriapbis nothofagi Cottier Taiwanaphidinae

Host plants: $\begin{aligned} & \text { Nothofagus truncata, N. fusca, N. solandri (var. } \\ & \text { cliffortioides) }\end{aligned}$
Description: Wingless morphs are yellowish-green to brownish on young stems. Alatae become mature on the undersides of leaves (Cottier 1953; Sunde 1979; Blackman \& Eastop 1994)

Morphs: Winged and wingless viviparous females, wingless oviparous females, winged males

First record: 1947 from Little Barrier Island (Cottier 1953)
Plant part: Young stems and leaves. New water shoots.

Distribution:
Little Barrier Is Mt Albert
Kauri Park, North Shore Pukekohe

Lake Rotoiti, Nelson Lakes
Dunedin Botanic Gardens
29 miles north of Te Anau
Totara Flat, Eglinton R.

NZAC Boundaries

| Coromandel (CL) | Auckland |
| :--- | :--- |
| Auckland (AK) | Auckland |
| Auckland (AK) | Auckland |
| Waikato (WA) | Waikato |
| Buller (BR) | Nelson-Marlborough |
| Dunedin (DN) | Otago |
| Otago Lakes (OL) | Southland |
| Otago Lakes (OL) | Southland |

Land status of collection sites:
Various, including National Parks
Natural enemies: Ladybirds and syrphid larvae (M.A.W.S. unpubl. data)
Rarity: Spasmodically common and widespread in New Zealand. The aphid tends to be found on trees close to the forest edge (M.A.W.S. pers. obs.).

Notes: Winged and wingless parthenogenetic adults have been collected from September to May. Oviparae and winged males occur from September to February (Blackman \& Eastop 1994).

Specimen(s): Crop \& Food Research, Lincoln
New Zealand Arthropod Collection, Auckland
Natural History Museum, London
MAF National Plant Pest Reference Laboratory - Auckland
References: Cottier (1953), Sunde (1973, 1979), Blackman \& Eastop (1994)


[^0]:    * Hyperparasitoids (also known as $2^{\circ}$ parasitoids) parasitise parasitoids (or $1^{\circ}$ parasitoids) (Dent 1991).

[^1]:    * Distribution localities are based on New Zealand Arthropod Collection (NZAC) boundaries (Crosby et al. 1976) and New Zealand Conservancies (Molloy \& Davis 1994).

