

NZ sea Iion Threat Management Plan
Quantitative risk assessment Methodology and timeline

Jim Roberts \& Ian Doonan
DOC, November 2014

In this presentation

- NZ sea lion TMP
- Quantitative risk assessment methodology
- Timeline
- Science/data requirements

NZ sea lion TMP

- Population decline at the Auckland Islands \& population change elsewhere potentially multiple causes
- TMP management objectives relating to population status (e.g. population growth rate or mature female n)
- TMP will review and assess potential threats to NZ sea lions
- Identify management actions that will attain management objectives

TMP process \& timeline

DEVELOPMENT PROCESS FOR THE THREAT MANAGEMENT PLAN (TMP)

TMP risk assessment process

1. Identification of threats
2. Develop models for quantitative risk assessment
3. $1^{\text {st }}$ Expert panel meeting (\sim April 2015)

- Review threats
- Review candidate management actions
- Relationship between threats and management actions
- Review models
- Other

4. Conduct quantitative risk assessment
5. $\quad 2^{\text {nd }}$ Expert panel meeting (\sim August 2015)

- Review outputs of quantitative risk assessment

6. Reporting (~November 2015)

TMP quantitative risk assessment

Two research components:

1. Demographic assessment in SeaBird to generate initial age distribution \& robust estimates of survival, pupping rate for relevant population
2. Simulation modelling to assess future performance of candidate management actions

Field observations, e.g. mark-resighting \& pup

Demographic parameters
\& current age structure

Population projections \pm threats

TMP quantitative risk assessment

Two research components:

1. Demographic assessment in SeaBird to generate initial age distribution \& robust estimates of survival, pupping rate for relevant population
2. Simulation modelling to assess future performance of candidate management actions

Demographic assessment (generate inputs for simulation modelling)

Demographic assessment (inputs for simulation modelling)

- Objectives:
- Estimate recent demographic rates and current age distribution (focussing on females)
- Calculate intrinsic demographic parameter distributions
- Which populations?
- Auckland Islands initially
- Photo-ID resighting at Otago Peninsula
- Development of demographic assessment using SeaBird software (DOC POP2012-02)
- Robust estimates of survival and tag loss rate
- Account for potential breeding site relocations

Demographic assessment

Demographic assessment

Demographic assessment

New data requirements
 Demographic assessment

- Auckland Islands
- Three additional years' observations at Auckland Islands (2012/13-2014/15)
- Resighting effort at all Auckland Islands breeding rookeries
- Otago Peninsula
- Photo-ID mark-resighting observations by individual (~10 years resighting observations)
- Campbell \& Stewart Island
- Can assume demographic rates for simulation model runs

Simulation modelling
Performance of management actions

Simulation modelling Performance of management actions

- Objectives:
- assess future population consequences of various threats (e.g. reduced pup survival)
- assess future performance of management actions (e.g. increase pup survival by X\%)
- focus on Auckland Islands, then other colonies
- Account for uncertainty
- demographic rates
- nature/magnitude of threats
- future carrying capacity \& degree/mechanism of density dependence
- Operating model for population projections
- without density dependence
- with density dependence

Projections without density dependence

- Objectives
- Assess effects of potential threats on future population size/growth over short time period (e.g. 5 or 10 years)
- Assess performance of candidate management actions
- No population density effect on growth rate, though there will be age distribution effects
- Methodology
- Develop operating model to conduct population projections
- Use estimates of current age distribution
- Sample from demographic parameter distributions
- Assess population effects of threats \& performance of management actions

Projections with density dependence

- Objectives
- Assess population effects of threats \& performance of candidate management actions over longer time periods
- Population growth rate also affected by population density relative to carrying capacity (K)
- Methodology
- Use same operating model and current age distribution
- Assume mechanism of density dependence and scenario for K
- Sample from intrinsic demographic parameter distributions
- Assess population effects of threats \& performance of management actions

Requirements
 Projections with density dependence

- Carrying capacity
- Probable range of values
- Constant or dynamic

Genetics, temporal teeth isotopes, oceanography, BFG model, expert panel meeting

- Demographic mechanism of density dependence
- Survival, pupping rate, age at first pupping, relocation?
- Shape of density dependence relationship

Literature on NZ SLs and other pinniped sp., expert panel meeting

End of presentation

