

NZ sea lion Threat Management Plan

Quantitative risk assessment Methodology and timeline

Jim Roberts & Ian Doonan

DOC, November 2014

In this presentation

- NZ sea lion TMP
- Quantitative risk assessment methodology
- Timeline
- Science/data requirements

enhancing the benefits of New Zealand's natural resources

NZ sea lion TMP

- Population decline at the Auckland Islands & population change elsewhere potentially multiple causes
- TMP management objectives relating to population status (e.g. population growth rate or mature female *n*)
- TMP will review and assess potential threats to NZ sea lions
- Identify management actions that will attain management objectives

TMP process & timeline

TMP risk assessment process

- 1. Identification of threats
- 2. Develop models for quantitative risk assessment
- 3. 1st Expert panel meeting (~April 2015)
 - Review threats
 - Review candidate management actions
 - Relationship between threats and management actions
 - Review models
 - Other
- 4. Conduct quantitative risk assessment
- 5. 2nd Expert panel meeting (~August 2015)
 - Review outputs of quantitative risk assessment
- 6. Reporting (~November 2015)

TMP quantitative risk assessment

Two research components:

- 1. Demographic assessment in SeaBird to generate initial age distribution & robust estimates of survival, pupping rate for relevant population
- 2. Simulation modelling to assess future performance of candidate management actions

TMP quantitative risk assessment

Two research components:

- 1. Demographic assessment in SeaBird to generate initial age distribution & robust estimates of survival, pupping rate for relevant population
- 2. Simulation modelling to assess future performance of candidate management actions

Demographic assessment (generate inputs for simulation modelling)

Demographic assessment (inputs for simulation modelling)

- Objectives:
 - Estimate recent demographic rates and current age distribution (focussing on females)
 - Calculate *intrinsic* demographic parameter distributions
- Which populations?
 - Auckland Islands initially
 - Photo-ID resighting at Otago Peninsula
- Development of demographic assessment using SeaBird software (DOC POP2012-02)
 - Robust estimates of survival and tag loss rate
 - Account for potential breeding site relocations

Demographic assessment

Demographic assessment

Demographic assessment

New data requirements Demographic assessment

- Auckland Islands
 - Three additional years' observations at Auckland Islands (2012/13-2014/15)
 - Resighting effort at all Auckland Islands breeding rookeries
- Otago Peninsula
 - Photo-ID mark-resignting observations by individual (~10 years resignations)
- Campbell & Stewart Island
 - Can assume demographic rates for simulation model runs

Simulation modelling Performance of management actions

Simulation modelling Performance of management actions

- Objectives:
 - assess future population consequences of various threats (e.g. reduced pup survival)
 - assess future performance of management actions (e.g. increase pup survival by X%)
 - focus on Auckland Islands, then other colonies
- Account for uncertainty
 - demographic rates
 - nature/magnitude of threats
 - future carrying capacity & degree/mechanism of density dependence
- Operating model for population projections
 - *without* density dependence
 - *with* density dependence

Projections *without* density dependence

• Objectives

- Assess effects of potential threats on future population size/growth over short time period (e.g. 5 or 10 years)
- Assess performance of candidate management actions
- No population density effect on growth rate, though there will be age distribution effects
- Methodology
 - Develop operating model to conduct population projections
 - Use estimates of current age distribution
 - Sample from demographic parameter distributions
 - Assess population effects of threats & performance of management actions

Projections with density dependence

Objectives

- Assess population effects of threats & performance of candidate management actions *over longer time periods*
- Population growth rate also affected by population density relative to carrying capacity (*K*)
- Methodology
 - Use same operating model and current age distribution
 - Assume mechanism of density dependence and scenario for *K*
 - Sample from *intrinsic* demographic parameter distributions
 - Assess population effects of threats & performance of management actions

Requirements Projections with density dependence

- Carrying capacity
 - Probable range of values
 - Constant or dynamic

Genetics, temporal teeth isotopes, oceanography, BFG model, expert panel meeting

- Demographic mechanism of density dependence
 - Survival, pupping rate, age at first pupping, relocation?
 - Shape of density dependence relationship

Literature on NZ SLs and other pinniped sp., expert panel meeting

End of presentation

enhancing the benefits of New Zealand's natural resources