

N-I-WA

Jim Roberts & Ian Doonan NIWA CSP/AEWG, 17th August 2015

This presentation is not for publication, release or quotation in any form without prior written approval from the MPI Principal Adviser Fisheries Science and the author

NZSL TMP – risk assessment process

Assessment methodology

For Auckland Islands & Otago Peninsula

- 1. Demographic assessment:
 - Estimate current age distribution
 - Demographic rates for projections
- 2. Projections from MPD run (Triage)
 - Estimate parameters with upper level of threat then project forward 20 years
 - Screen out threats that have low impact
- 3. Projections from MCMC run (high impact threats)
 - Apply range of threat levels over 20 years (2017-2037)
 - Relate distributions of projected mature n to criteria
 - Repeat with mitigation measures

Summary of observations

• Pup census:

- Estimates assigned high confidence for Paul Breen's modelling
- Sandy Bay 1966-2015 (1965/66-2014/15)
- Auckland Islands 1995-2015
- Mark-resighting:
 - Extract from Dragonfly database
 - Sandy Bay females
 - Marked 1990-2014 & resighted 1998-2015 females only
 - Distinction by mark type (brand, chip or flipper tag only)

Summary of model at previous AEWG meeting

- Model period from 1960-2015
- Survival:
 - Separate estimates for age classes 0, 1, 2-5, 6-14 and 15+
 - Only age 0 and 6-14 survival were year-varying
- Pupping/maturation:
 - Year-varying pupping rate for age 8-14
 - 5 parameters gave pupping probability at ages 4, 5, 6, 7 and 15+ relative to 8+
- Resighting probability:
 - All year-varying or year-constant resignting probability, separate estimates depending on mark type
- Tag loss rate:
 - Functional form (3 parameters) gives age-varying probability of losing 1 flipper tag in a year; another parameter gives probably of losing 2 tags in a year

Order of demographic model modification

- Effects of alternative census CVs
- Fitting to Auckland Islands age distribution & census
- Parameterisation of resighting probability

Effects of alternative census CVs

Alternative census CV

- Arbitrarily used CV of 6% for census in previous model runs
- AEWG suggested looking at sensitivity of normalised residuals to alternative census CV as means of selecting appropriate value

Alternative census CV

- When using CV of 6%, tend to overestimate pup production after 2009
- This is improved when CV of 3% is used
- Adopted for all subsequent runs

enhancing the benefits of New Zealand's natural resources

Fitting to Auckland Islands age distribution & census

Census + Age observations

- Previous runs fit to SB MR, census and age composition of lactating females (puppers)
- MPI/DOC opted to change the main census series to Auckland Islands for assessment of threats
- Small decrease in likelihood (~4 units) when fitting to AI instead of SB
- Al series begins 1995 (SB was 1960s)

Age composition Sandy Bay v Dundas

Simon Childerhouse's (2010) female ageing study indicated very different age composition at Dundas in 1998-2001

Age composition Auckland Islands

- Combined series by multiplying proportion at age by pup production estimate in corresponding year to get numbers at age for each rookery
- These were then combined and proportion at-age recalculated (AI age)

Pup survival fitting to AI census + age

- Fitting to AI age had tiny effect on all parameters except pup survival and relative pupping rate at age 4
- Survival prior to 1990 greatly increased and slight increase 1994-1997
- Relative pupping rate at age 4 increased from ~0.1 to ~0.2

Parameterisation of resighting probability

Low resighting effort in 2013

- Assumption of year-invariant resighting affects survival in later years
- Recommended we use year-varying parameters

Parameterisation of resighting probability

- Recommended actions:
 - Model run with year-varying parameters
- However:
 - Greatly increases number of potentially correlated parameters
 - Period with highly consistent resighting effort (e.g. 2002-2012)

Parameterisation of year-varying resighting probability

- We elected to use year blocks: 1999, 2000-2001, 2002-2012, 2013, 2014-2015
- MPD estimates...

MCMC – Auckland Islands

MCMC run

Model structure as previous AEWG, expect:

- Fit to Auckland Islands census (model start 1990) with CV of 3%
- Fit to Dundas/Sandy Bay age
- Resighting probability blocked for different yeargroups
- Relative pupping rate age 15+ fixed to 1, as MPD run hit upper bound (same as age 8-14, effectively 8+)

MCMC sampling

- Three chains with different starting values
- Currently ~50,000 iterations for each chain (still running)

Parameter correlation

Parameter correlation

MCMC outputs - Survival

MCMC outputs - Pupping

MCMC outputs – Resighting probability

MCMC outputs – Tag loss & N_{0 (1990)}

 $N_0 = 1,780 (1,640 - 1,970)$

Auckland Islands MCMC – Projection

Actions still to be addressed

- Explore alternative rules for assigning pupping status
- Model runs from start of decline with/without threats
- Explore effects of phantom tags on parameter estimates
- Year subsets to assess model predictions v observed

Otago Peninsula assessment

Otago Peninsula assessment update

Added 2014/15 observations:

- 8 pups born
- Related to mothers (Sealion Trust family tree)

Changes to parameterisation for MCMC:

- Year-invariant parameters
- Survival ages 0, 1-5, 6-14 & 15+
- Combined resignting probability for ages 1+ immature & non-puppers
- Pupping rate age 7+; relative pupping rate age block 4-6
- Resight puppers fixed to 1 (MPD estimate at upper bound)

Otago Peninsula – Fit to census

Otago Peninsula MCMC parameter correlation assessment

	Surv0	Surv1-5	Surv6-14	Surv15plus	Pup4-6	Pupp7plus	ResImNP
NO	-0.20	-0.27	-0.14	-0.10	0.04	-0.13	0.05
Surv0		-0.27	-0.34	0.06	-0.14	-0.07	-0.18
Surv1-5			-0.38	-0.19	-0.11	-0.11	0.05
Surv6-14				-0.16	0.07	-0.16	0.02
Surv15plus					-0.08	0.07	-0.04
Pup4-6						-0.40	0.15
Pupp7plus							-0.00

Otago Peninsula MCMC – Fit to census (MPD) & estimates

Otago Peninsula MCMC – projection

End of demographic assessment presentation