# High Quality DNA Extraction for Advanced Genetic Analysis: Final Report

Emma L. Carroll<sup>1</sup>, Debbie Steel<sup>2</sup>, C. Scott Baker<sup>2</sup> and Rochelle Constantine<sup>1,3,\*</sup>

<sup>1</sup>School of Biological Sciences, University of Auckland - Te Kura Matauranga Koiora, Waipapa Taumata Rau

<sup>2</sup>Marine Mammal Institute and Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Oregon

<sup>3</sup>Institute of Marine Science, University of Auckland - Te Whare Takiura Matai Putaiao Moana, Waipapa Taumata Rau

\* Correspondence: r.constantine@auckland.ac.nz

## Introduction

Advances in genomic technologies are being applied to marine mammals to understand kinship, population structure and taxonomy in unprecedented detail (e.g., Cammen et al., 2016). Such techniques require high quality and quantity of DNA to ensure good results.

The 2020 Hector's and Māui Dolphin Threat Management Plan (TMP) and 2021 Hector's and Māui Dolphin Research Strategy highlights the importance of understanding and maintaining connectivity between subpopulations. This project aimed to extract high quality DNA from some of the vulnerable subpopulations of Hector's dolphins identified in the 2020 TMP and subsequent research strategy. In particular we focus on Māui dolphin (*Cephalorhynchus hectori maui*) and Hector's dolphin (*C. h. hectori*) samples the southern South Island (Te Wae Wae and Toi Toi Bays), Kaikōura, Golden Bay and Queen Charlotte Sound.

### Methods

### Sample collection

Hector's dolphins that have been received by the New Zealand Cetacean Tissue Archive (NZCeTA) between 2012 and February 2022, i.e., the time period since the previous analyses (Hamner et al., 2012), were identified from the archive's database. These samples are a combination of biopsy samples, primarily from Queen Charlotte Sound, and stranding samples sent in by Department of Conservation – Te Papa Atawhai (DOC) rangers or Prof. Wendi Roe, Massey University as part of the necropsy protocols.

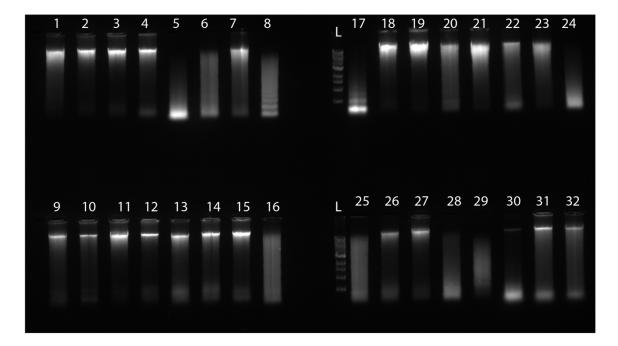
### DNA Extraction and sex identification

Samples were stored in 70%-95% ethanol prior to DNA extraction. A small section of tissue (approximately 2 x 2 x 2 mm) was sub-sampled and cut into pieces which resembled grains of sand. The tissue was digested with proteinase K followed by total cellular DNA extraction using a standard phenol/chloroform/isoamyl (PCI) protocol (Sambrook et al., 1989) which had been modified for small samples (Baker et al., 1998) or with the DNeasy kit.

Sex was identified for each sample using a multiplexed PCR protocol which amplified fragments of the *sry* and ZFX/ZFY genes (Aasen & Medrano, 1990; Gilson et al., 1998). For each PCR reaction, 1 µL of DNA stock was used initially. If this did not produce a PCR product, DNA stock was diluted (5 uL DNA: 45 µL

Qiagen EB buffer) and sex identification PCR was reattempted with 1  $\mu$ L of diluted DNA. If a sample still did not amplify, the sample was processed with the Zymo one step PCR inhibitor removal kit to improve the PCR success rate. The PCR products were visualised using gel electrophoresis to determine the sex of each sample (Figure 1).

## Assessment of DNA quality and quantity


DNA was visualised with gel electrophoresis to determine DNA quality (2 uL DNA mixed with 2 uL gel red and loading dye and run on a 1% agarose gel; Figure 1). The gel picture was used to categorise DNA quality into:

(1) High molecular weight (HMW) DNA, with a single bright band indicating DNA was extracted on average >10 kb long. This is typically seen in well-preserved biopsy samples.

(2) Smear: with a HMW band extracted as above, but also a smear of DNA in the lower molecular weight (LMW) range, indicating some degradation of sample. This is typically seen in fresh stranding samples.
(3) LMW DNA: gel picture shows that only LMW DNA (<5 kb) was extracted, indicating the sample has undergone degradation.</li>

Categories (1) and (2) are suitable for use in genomic applications whereas category (3) is likely to work for some applications (e.g., biparentally inherited microsatellite loci) but not for high throughput genomic sequencing.

DNA quantity was measured using spectrophotometry with the Nanodrop 2000 (Thermofisher) or using fluorometry with the Qubit broad range DNA quantification kit (Thermofisher).



**Figure 1:** Image from gel electrophoresis used to assess DNA quality. High molecular weight (HMW) examples include samples 1-4 and 18 and 19. HMW smear examples include samples 16 and 25. Low molecular weight (LMW) examples include samples 5 and 24. The 1 kb ladder is indicated with L.

**Table 1:** Overview of Hector's dolphin samples included in the project based on sampling region. DOC ID = DOC stranding code assigned for Hector's & Māui dolphins. HMW = high molecular weight, LMW = low molecular weight (see Figure 1 for examples).

<sup>1</sup> Includes mana whenua Ngāti Toa Rangatira/ Te Ātiawa o Te Waka-a-Māui/ Ngāti Apa ki te Rā Tō/ Rangitāne o Wairua/ Ngāti Kuia/ Ngāti Rārua/ Ngāti Kōata/ Ngāti Tama ki Te Tau Ihu

<sup>2</sup> Includes mana whenua Ngāti Toa Rangatira/ Te Ātiawa o Te Waka-a-Māui/ Rangitāne o Wairua/ Ngāti Kuia/ Ngāti Kōata

| Species<br>code | U-code,<br>DOC ID          | Date stranded | Location                                | Region                               | Sex | lwi/Hapu                    | Quantity:<br>ng/ul | DNA<br>quality |
|-----------------|----------------------------|---------------|-----------------------------------------|--------------------------------------|-----|-----------------------------|--------------------|----------------|
| Che12TM01       | U12-250, H225              | 24/Aug/2012   | Between Taupata and Billy King<br>Creek | Tasman F                             |     | Te Tau lhu lwi <sup>1</sup> | 97                 | HMW            |
| Che12TM02       | U12-246, H227              | 12/Nov/2012   | Seaford, Golden Bay                     | Tasman F                             |     | Te Tau lhu lwi <sup>1</sup> | 28                 | HMW            |
| Che13SO01       | U13-091, H238              | 8/Mar/2013    | Freshwater Basin - Milford Sound        | Southland                            | М   | Ngāi Tahu                   | 29                 | smear          |
| Che14TM01       | U14-138, U14-<br>198, H251 | 30/Oct/2014   | Pakawau Beach, Golden Bay               | Tasman                               | М   | Te Tau lhu lwi <sup>1</sup> | 77                 | HMW            |
| Che15TM01       | U15-005                    | 9/Jan/2015    | Rocks Road, Nelson                      | Tasman                               | F   | Te Tau lhu lwi <sup>1</sup> | 122                | LMW            |
| Che15TM02       | U15-006, U15-<br>161, H253 | 11/Jan/2015   | Waimea Inlet, Nelson                    | Tasman M Te Tau Ihu Iwi <sup>1</sup> |     | Te Tau lhu lwi <sup>1</sup> | 124                | smear          |
| Che15SO01       | U15-159, H254              | 23/Feb/2015   | Colac Bay                               | Southland F                          |     | Ngāi Tahu                   | 35                 | HMW            |
| Che16QCS01      | U16-042                    | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | F   | Te Tau lhu lwi <sup>2</sup> | 119                | smear          |
| Che16QCS03      | U16-043                    | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | М   | Te Tau lhu lwi <sup>2</sup> | 30                 | smear          |
| Che16QCS04      | U16-044                    | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | М   | Te Tau lhu lwi²             | 32                 | HMW            |
| Che16QCS05      | U16-045                    | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | F   | Te Tau lhu lwi²             | 18                 | smear          |
| Che16QCS06      | U16-051                    | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | F   | Te Tau lhu lwi²             | 47                 | HMW            |
| Che16QCS07      | U16-047                    | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | М   | Te Tau lhu lwi <sup>2</sup> | 59                 | HMW            |
| Che16QCS09      | U16-049,<br>U16-052        | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | М   | Te Tau lhu lwi <sup>2</sup> | 36                 | smear          |
| Che16QCS13      | U16-053                    | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | F   | Te Tau lhu lwi <sup>2</sup> | 91                 | smear          |
| Che16QCS14      | U16-054                    | 13/Jun/2016   | Queen Charlotte Sound                   | Marlborough                          | М   | Te Tau lhu lwi²             | 39                 | HMW            |
| Che14KK05       | U17-096, H260              | 15/Dec/2016   | Old Beach Road                          | Kaikōura                             | F   | Ngāi Tahu                   | 18                 | HMW            |
| Che18TM01       | U18-069, H269              | 4/Mar/2018    | Rabbit Island                           | Tasman                               | М   | Te Tau lhu lwi <sup>1</sup> | 460                | smear          |
| Che18KK01       | U18-071, H272              | 6/Apr/2018    | Kaikoura                                | Kaikōura                             | М   | Ngāi Tahu                   | 143                | smear          |

| Che18KK02  | U18-066, H271 | 22/Apr/2018 | South Bay Kaikoura    | Kaikōura    | F | Ngāi Tahu       | 36  | No visible<br>DNA |
|------------|---------------|-------------|-----------------------|-------------|---|-----------------|-----|-------------------|
| Che19SO01  | U19-056, H285 | 12/Dec/2019 | Milford Sound         | Southland   | F | Ngāi Tahu       | 31  | No visible<br>DNA |
| Che21QCS01 | NA            | 19/Oct/2021 | Queen Charlotte Sound | Marlborough | F | Te Tau lhu lwi² | 157 | smear             |

**Table 2**: DNA assessment of Māui dolphin genetic samples, based on quantification (assessed by fluorometry) and quality (assessed by gel). Samples are shown by Individual ID, and for those dolphins sampled in more than one year, assessment is given for a representative sample for each year, shown by Survey ID. As the 2015-2016 samples have been analysed using ddRADSeq already, a subset (indicated by \*) will be rerun to ensure data comparability across studies and information is given here only for reference where available. N/A = not analysed. Several samples had small tissue sample that did not provide sufficient DNA for ddRADSeq. HMW = high molecular weight, LMW = low molecular weight, whereas one sample ran poorly on the gel (gel error) (see Figure 1 for examples).

| Individual ID | Survey ID |      |      |      |        |        | Indivi         | dual ID        |
|---------------|-----------|------|------|------|--------|--------|----------------|----------------|
|               | 2010      | 2011 | 2015 | 2016 | 2020   | 2021   | Quantity:ng/ul | Quantity:ng/ul |
| Chem15NZ11    |           |      |      |      | 20NZ39 |        | N/A            | N/A            |
| Chem15NZ11    |           |      |      |      | 20NZ43 |        | N/A            | HMW            |
| Chem15NZ11    |           |      |      |      |        | 21NZ11 | 33             | HMW            |
| Chem15NZ16    |           |      |      |      | 20NZ35 |        | 39             | smear          |
| Chem15NZ16    |           |      |      |      |        | 21NZ31 | 38             | HMW            |
| Chem15NZ17    |           |      |      |      | 20NZ50 |        | 50             | HMW            |
| Chem15NZ22    |           |      |      |      |        | 21NZ05 | 32             | HMW            |
| Chem15NZ25    |           |      |      |      | 20NZ11 |        | 20             | Gel error      |
| Chem15NZ28    |           |      |      |      | 20NZ22 |        | 35             | HMW            |
| Chem15NZ28    |           |      |      |      |        | 21NZ23 | 27             | HMW            |
| Chem15NZ31    |           |      |      |      | 20NZ06 |        | 43             | HMW            |
| Chem15NZ31    |           |      |      |      |        | 21NZ34 | 39             | HMW            |
| Chem15NZ33    |           |      |      |      | 20NZ34 |        | 29             | smear          |
| Chem15NZ39    |           |      |      |      | 20NZ31 |        | 33             | HMW            |
| Chem15NZ39    |           |      |      |      |        | 21NZ19 | 27             | HMW            |
| Chem15NZ44    |           |      |      |      |        | 21NZ10 | 60             | HMW            |
| Chem15NZ45    |           |      |      |      | 20NZ40 |        | 55             | smear          |
| Chem16NZ47    |           |      |      |      | 20NZ24 |        | 47             | HMW            |

| Chem18NZ03 |        | 1      | 47         | No visible DNA   |
|------------|--------|--------|------------|------------------|
| Chem18NZ04 |        |        | 51         | HMW              |
| Chem20NZ02 | 20NZ02 |        | 33         | HMW              |
| Chem20NZ02 |        | 21NZ26 | 32         | HMW              |
| Chem20NZ05 | 20NZ30 |        | Not enough | tissue for ddRAD |
| Chem20NZ05 |        | 21NZ06 | 11         | No visible DNA   |
| Chem20NZ07 | 20NZ07 |        | 25         | HMW              |
| Chem20NZ08 | 20NZ49 |        | 30         | HMW              |
| Chem20NZ08 |        | 21NZ09 | 20         | HMW              |
| Chem20NZ09 | 20NZ10 |        | 21         | HMW              |
| Chem20NZ12 | 20NZ14 |        | 41         | HMW              |
| Chem20NZ13 | 20NZ13 |        | 55         | HMW              |
| Chem20NZ16 | 20NZ16 |        | 49         | HMW              |
| Chem20NZ18 | 20NZ18 |        | 65         | HMW              |
| Chem20NZ20 | 20NZ20 |        | 23         | HMW              |
| Chem20NZ25 | 20NZ27 |        | 165        | smear            |
| Chem20NZ25 |        | 21NZ08 | 31         | HMW              |
| Chem20NZ26 | 20NZ26 |        | 42         | smear            |
| Chem20NZ26 |        | 21NZ22 | 29         | HMW              |
| Chem20NZ29 | 20NZ29 |        | 32         | smear            |
| Chem20NZ29 |        | 21NZ18 | 35         | HMW              |
| Chem20NZ36 | 20NZ37 |        | 24         | smear            |
| Chem20NZ36 |        | 21NZ27 | 33         | HMW              |
| Chem20NZ42 | 20NZ45 |        | 41         | HMW              |
| Chem20NZ47 | 20NZ48 |        | 34         | smear            |
| Chem21NZ02 |        | 21NZ17 | 72         | HMW              |

| Chem21NZ04 |         |         |  | 21NZ14 | 75         | HMW              |
|------------|---------|---------|--|--------|------------|------------------|
| Chem21NZ07 |         |         |  | 21NZ07 | 63         | HMW              |
| Chem21NZ20 |         |         |  | 21NZ20 | 58         | HMW              |
| Chem21NZ25 |         |         |  | 21NZ25 | 51         | HMW              |
| Chem21NZ35 |         |         |  |        | Not enough | tissue for ddRAD |
| NI10-01    | NI10-01 |         |  |        | 56         | HMW              |
| NI10-02    | NI10-02 |         |  |        | 54         | HMW              |
| NI10-03    | NI10-03 |         |  |        | 23         | HMW              |
| NI10-04    | NI10-12 |         |  |        | 18         | HMW              |
| NI10-05    | NI10-05 |         |  |        | 35         | HMW              |
| NI10-05    | NI10-07 |         |  |        | 48         | HMW              |
| NI10-05    |         | NI11-03 |  |        | 51         | HMW              |
| NI10-05    |         | NI11-04 |  |        | 55         | HMW              |
| NI10-06    | NI10-06 |         |  |        | Not enough | tissue for ddRAD |
| NI10-06    |         | NI11-13 |  |        | 32         | HMW              |
| NI10-09    | NI10-09 |         |  |        | 108        | HMW              |
| NI10-10    | NI10-10 |         |  |        | 50         | нмм              |
| NI10-11    | NI10-11 |         |  |        | 45         | HMW              |
| NI10-11    |         | NI11-05 |  |        | 57         | HMW              |
| NI10-13    | NI10-13 |         |  |        | 113        | HMW              |
| NI10-13    |         | NI11-02 |  |        | 10         | HMW              |
| NI10-16    | NI10-16 |         |  |        | 20         | No visible DNA   |
| NI10-16    |         | NI11-07 |  |        | Not enough | tissue for ddRAD |
| NI10-16    |         |         |  | 21NZ24 | 27         | HMW              |
| NI10-17    | NI10-17 |         |  |        | 13         | нмм              |
| NI10-17    |         | NI11-06 |  |        | 18         | нмм              |

| NI10-20 | NI10-20 |         |        |        | 48           | HMW             |
|---------|---------|---------|--------|--------|--------------|-----------------|
| NI10-20 |         |         | 20NZ21 |        | 29           | smear           |
| NI10-20 |         |         |        | 21NZ28 | 33           | HMW             |
| NI10-21 | NI10-23 |         |        |        | 10           | HMW             |
| NI10-21 |         | NI11-18 |        |        | 36           | HMW             |
| NI10-24 | NI10-24 |         |        |        | 51           | HMW             |
| NI10-24 | NI10-37 |         |        |        | Not enough t | issue for ddRAD |
| NI10-24 |         | NI11-11 |        |        | Not enough t | issue for ddRAD |
| NI10-24 |         |         | 20NZ23 |        | 13           | HMW             |
| NI10-25 | NI10-25 |         |        |        | 15           | HMW             |
| NI10-26 | NI10-26 |         |        |        | 58           | HMW             |
| NI10-26 |         |         | 20NZ32 |        | 26           | smear           |
| NI10-27 | NI10-27 |         |        |        | 16           | HMW             |
| NI10-27 |         | NI11-31 |        |        | 48           | HMW             |
| NI10-28 | NI10-28 |         |        |        | 29           | HMW             |
| NI10-28 |         | NI11-29 |        |        | 53           | HMW             |
| NI10-32 | NI10-32 |         |        |        | 7            | HMW             |
| NI10-33 | NI10-33 |         |        |        | 31           | HMW             |
| NI10-35 | NI10-35 |         |        |        | 15           | HMW             |
| NI10-35 |         | NI11-10 |        |        | 110          | HMW             |
| NI11-01 |         | NI11-01 |        |        | 95           | HMW             |
| NI11-09 |         | NI11-09 |        |        | 90           | HMW             |
| NI11-09 |         |         |        | 21NZ13 | 44           | HMW             |
| NI11-14 |         | NI11-14 |        |        | 41           | HMW             |
| NI11-14 |         |         | 20NZ01 |        | 37           | HMW             |
| NI11-17 |         | NI11-17 |        |        | Not enough t | issue for ddRAD |

| NI11-20 |         | NI11-20 |  |        |        | 33         | HMW              |
|---------|---------|---------|--|--------|--------|------------|------------------|
| NI11-20 |         |         |  | 20NZ15 |        | 52         | HMW              |
| NI11-21 |         | NI11-21 |  |        |        | 65         | HMW              |
| NI11-23 |         | NI11-23 |  |        |        | 37         | HMW              |
| NI11-24 |         | NI11-24 |  |        |        | Not enough | tissue for ddRAD |
| NI11-25 |         | NI11-25 |  |        |        | 85         | HMW              |
| NI11-28 |         | NI11-28 |  |        |        | 36         | HMW              |
| NI11-30 |         | NI11-30 |  |        |        | 72         | HMW              |
| NI11-33 |         | NI11-33 |  |        |        | 48         | HMW              |
| NI37    |         | NI11-26 |  |        |        | 70         | HMW              |
| NI45    |         | NI11-19 |  |        |        | 104        | HMW              |
| NI56    | NI10-31 |         |  |        |        | 82         | HMW              |
| NI56    |         | NI11-12 |  |        |        | 62         | HMW              |
| NI69    | NI10-36 |         |  |        |        | 40         | HMW              |
| NI69    |         |         |  |        | 21NZ32 | 43         | HMW              |
| NI70    |         | NI11-15 |  |        |        | 54         | HMW              |
| NI73    | NI10-30 |         |  |        |        | 60         | HMW              |
| NI74    | NI10-15 |         |  |        |        | 18         | HMW              |

### **Results and Discussion**

A total of 25 Hector's dolphin samples from stranded or biopsied animals were received by NZCeTA from Southland, Kaikōura, Golden Bay and Queen Charlotte Sound up until February 2022. This represents 22 individuals, based on genotypes matches. Notably, a stranding from 2017 was confirmed as a genetic profile match to a 2014 biopsy sample of a Hector's dolphin from Kaikoura. All but three of 22 individuals had HMW DNA (HMW or smear category) and all had DNA concentrations of > 20 ng/uL, providing a good basis for future advanced genomic work

It is worth noting that of these 25 samples, two duplicate genotypes identified were samples received by NZCeTA separately from DOC and from Massey University from the same dolphin. During the process of this contract and related contracts, we have come across five instances where duplicate samples have been received in this way since 2012. It was not always possible to reconcile these based on metadata provided, although the genetic matches prompted us to review metadata available for all Hector's and Māui samples held where our analysis indicated potential genotype matches. There were also several samples received without metadata that would be useful for population structure analyses (e.g., stranding or bycatch location) for which we have requested information held by DOC. We suggest that a centralised database, shared by DOC, Massey University and University of Auckland for keeping track of the types of samples sent to and held by the different institutes, as well as their sample IDs and metadata, would ensure complete and accurate tracking of samples and data in future. This is particularly critical for the Hector's and Māui dolphins.

### Acknowledgements

Many thanks to mana whenua, DOC staff and Prof. Wendi Roe, Massey University for collecting samples for this work. Thanks to Fang Fei Tham, Richard O'Rorke and Doro Harrison from the University of Auckland – Waipapa Taumata Rau for help with lab work.

### References

- Aasen, E., & Medrano, J. (1990). Amplification of the ZFX and ZFY genes for sex identification in humans, cattle, sheep and goats. *Nature Biotechnology*, *8*, 1279–1281.
- Baker, C. S., Medrano-Gonzalez, L., Calambokidis, J., Perry, A., Pichler, F., Rosenbaum, H., Straley, J., Urban-Ramirez, J., Yamaguchi, M., & von Ziegesar, O. (1998). Population structure of nuclear and mitochondrial DNA variation among humpback whales in the North Pacific. *Molecular Ecology*, 7, 695–707.
- Cammen, K. M., Andrews, K. R., Carroll, E., Foote, A. D., Humble, E., Khudyakov, J. I., Louis, M., McGowen, M. R., Olsen, M. T., & Van Cise, A. M. (2016). Genomic methods take the plunge: Recent advances in high-throughput sequencing of marine mammals. *Journal of Heredity*, *107*(6), 481–495. https://doi.org/10.1093/jhered/esw044
- Gilson, A., Syvanen, M., Levine, K., & Banks, J. (1998). Deer gender determination by polymerase chain reaction: validation study and application to tissues, bloodstains, and hair forensic samples from California. *California Fish and Game*, *84*, 159–169.
- Hamner, R. M., Pichler, F., Heimeier, D., Constantine, R., & Baker, C. S. (2012). Genetic differentiation and limited gene flow among fragmented populations of New Zealand endemic Hector's and Maui's dolphins. *Conservation Genetics*, *13*, 987–1002.
- Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). *Molecular Cloning: A Laboratory Manual 2nd ed.* Cold Spring Harbor Laboratory Press.