Mapping Macrocystis pyrifera beds from satellite images in New Zealand

Sanky Meng, Vincent Zintzen, Helen Curtis and Shane Geange

Department of Conservation, National Office, Wellington

Summary

Recent advances in the resolution of images provided by satellites mean that it is now possible to cost-effectively map the surface canopy of *Macrocystis pyrifera* beds remotely, which allows for the analysis of time-series data. We present analysis using near infrared bands and normalized difference vegetation index (NDVI) from WorldView-II satellite imagery to map Macrocystis beds in the Marlborough Sounds (Tory Channel and Long Island).

The main findings from this study are that:

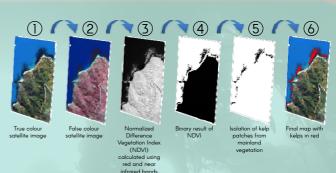
- 1. Current resolution of satellite images and analytical methods makes possible the large-scale mapping of Macrocystis pyrifera beds in New Zealand waters using this method.
- 2. It is possible to follow the evolution through time of Macrocystis surface canopy, satellite images being acquired every two weeks.
- 3. Comparisons of progression or regression of Macrocystis surface canopy between sites can be made.

Background

Giant kelp Macrocystis pyrifera (bladder kelp) is a large perennial kelp that forms dense beds with layers of **floating** surface canopies.

2. These beds are at the base of many temperate coastal food s, provisioning **important** habitat.

3. Because giant kelp is a foundation species that responds to a range of pressures, it is a potentially good indicator species for monitoring the ecological integrity of the New Zealand marine environment.



Although there is some evidence that the extent of some of New Zealand's *Macrocystis* beds are declining, there has to date been assess the extent and rate of this

Method 1,2,3

- Multispectral satellite images (WorldView-II) were acquired for two areas in the Marlborough Sounds (around Long Island and in Tory Channel).
- For each location, satellite images were acquired for the winter of 2010 and 2013 when the growth of Macrocystis is maximal
- Image resolution: pixel size of 50cm in panchromatic and 2m in multispectral.
- Images bands: blue (450-510nm), green (510-580nm), red (630–690nm) and near infrared (NIR, 770–895nm) + 4 additional bands.

- Images were geo-referenced in ENVI/ArcMap.
- 4 images were created: true colour image (Red, Green, Blue), false colour image 1 (Near Infrared, Red, Green), false colour image 2 (Red Edge, Red, Green) and normalized difference vegetation index (NIR-Red/NIR+Red). Vegetation strongly absorbs NIR.
- The 4 images were compared to identify the canopy of Macrocystis.
- Band math tool was used to process NDVI into binary result (if NDVI ≥ 0.001 then x = 10 else x = 20). NDVI ≥ 0.001 is characteristic of
- Raster result was converted to vector file. Vector result was edited by cutting and deleting noisy information such as water, coast line and rocks.

Results Long Island (30 Sep 2010)

- The classification results of satellite images could pick up the signal of canopy forming kelps (red layer in above images).
- Significantly different *Macrocystis* canopy extent were detected between areas
- The extent of Macrocystis canopy beds were 53,030m², 45,022m², 78,265m² and 100,415m² for Long Island 2010, Long Island 2013, Tory Channel 2010, Tory Channel 2013.

In red, surface canopy forming Macrocystis pyrifera, as derived from satellite imagery

Prospects

- Satellite images could provide a powerful tool to remotely map the extent of Macrocystis pyrifera beds.
- The potential exists for quickly mapping large areas and creating robust reference points for past and
- Further tests are required to assess the effect that tidal levels, currents or turbidity might have on the

References

¹ Anderson, R. J., Rand, A., Rothman, M. D., Share, A., & Bolton, J. J. (2007). Mapping and quantifyi African kelp resource. African Journal of Marine Science, 29, 369-378. ² Cavanaugh, K. C., Siegel, D. A., Kinlan, B. P. & Reed, D. C. (2010). Scaling giant kelp t regional scales using satellite observations. *Marine Ecology Progress Series*, 403:13–27. ³ Cavanaugh, K. C., Siegel, D. A., Reed, D. C., & Dennison, P. E. (2011). Environmental in the Santa Barbara Channel, California. *Marine Ecology Progress Series*, 429: 1-17.

New Zealand Government

Department of Conservation Te Papa Atawbai