Demographic rates of northern royal albatross at Taiaroa Head

Yvan Richard, Lyndon Perriman, Chris Lalas, Edward Abraham

Dragonfly Science

June 5, 2013

Goals

Estimation of:

- Annual survival rate of different age classes of northern royal albatross
- Age at first return to the colony
- Age at first reproduction
- Population size
- Ratio of the total population to the number of annual breeding pairs

How?

- Bayesian multi-state capture-recapture model
- 22 years of data on presence/absence and breeding at Taiaroa Head colony

Update of the Potential Biological Removal (PBR)

Rationale

At risk from commercial fisheries in NZ (Richard et al. 2013)

- Potential annual fatalities: 108 (95\% c.i.: 72-160)
- Potential Biological Removal (PBR): 396 (95\% c.i.: 164-782)
- Large uncertainty in PBR driven by uncertainty in adult survival rate

Existing adult survival rates from 20 years ago (Robertson 1993)

Taiaroa Head: great quality data; potential extrapolation to the whole species.

Northern royal albatross

- Endemic to New Zealand
- Conservation status: "Endangered" (IUCN) / "Naturally Uncommon" (DOC)
- Breeds predominantly in the Chatham Islands. 5 200-5 800 annual breeding pairs
- Biennial breeder; breeding season October-November
- Single egg laying: October-December
- Hatching: late January / early February
- Fledging: August-October
- Age at first return: minimum 3 year-old
- Age at first reproduction: 8 year-old

Taiaroa Head colony

A small colony self-established on the New Zealand mainland at Taiaroa Head, at the tip of the Otago peninsula.

- First fledgling in 1938
- Administered as a Nature Reserve in 1964
- Now a major tourist attraction
- 130000 visitors/year

Taiaroa Head

- Banding of individuals since 1938
- Colony intensively monitored since 1968
- Predator control
- Fostering of eggs and chicks

Data

Records:

- Presence at the colony (present or not)
- Status
- Juvenile (from fledging to $1^{\text {st }}$ return)
- Pre-breeder (from $1^{\text {st }}$ return to $1^{\text {st }}$ breeding)
- Breeding adult
- Non-breeding adult
- Outcome of breeding attempt (successful or not)
- Age
- Sex

Daily visits summarised at year level.
Data available from 1989-90 to 2011-12.
2128 annual resightings of 355 banded individuals of known-age.
27 immigrants from the Chathams not included.

At a glance

Survival analysis

Year: $\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
Data:

Status:
Alive
Dead?

Survival analysis

Survival rate needs to be jointly estimated with detection probability. Here,

- Detection probability $=1$
- When not recorded at colony, individual either at sea or dead.

Survival and detection probability depend on the state of the individual.

- Juveniles have lower survival
- Pre-breeders have higher colony attendance
- Adult breeding successfully are generally not seen at the colony the following year.

Modelling

Bayesian multi-state capture-recapture model

- Integrated model, adapted from Dillingham et al. (2011)
- Estimation of the transitions between states
- States are observed or not

J: Juvenile PB: Pre-breeder B: Breeding adult NB: Non-breeding adult
D: Dead

Base model

Transitions between classes

$$
\begin{aligned}
P\left(\mathrm{~PB}_{t} \mid \mathrm{J}_{t-1}\right) & =R_{a} \phi_{\mathrm{J}} \\
P\left(\mathrm{~B}_{t} \mid \mathrm{PB}_{t-1}\right) & =B_{a} \phi_{\mathrm{PB}} \\
P\left(\mathrm{~B}_{t} \mid \mathrm{NB}_{t-1}\right) & =P(\text { breed } \mid \text { non-breeder }) \phi_{\mathrm{A}}
\end{aligned}
$$

$$
P\left(\mathrm{NB}_{t} \mid \mathrm{B}_{t-1}\right)= \begin{cases}(1-P(\text { breed again } \mid \text { success })) \phi_{\mathrm{A}} & \text { after successful breeding attempt } \\ (1-P(\text { breed again } \mid \text { fail })) \phi_{\mathrm{A}} & \text { after failed breeding attempt }\end{cases}
$$

Base model

Probabilities of remaining in the same live state:

$$
\begin{aligned}
P\left(\mathrm{~J}_{t} \mid \mathrm{J}_{t-1}\right) & =\left(1-R_{a}\right) \phi_{\mathrm{J}} \\
P\left(\mathrm{~PB}_{t} \mid \mathrm{PB}_{t-1}\right) & =\left(1-B_{a}\right) \phi_{\mathrm{PB}} \\
P\left(\mathrm{NB}_{t} \mid \mathrm{NB}_{t-1}\right) & =(1-P(\text { breed } \mid \text { non-breeder })) \phi_{\mathrm{A}}
\end{aligned}
$$

$$
P\left(\mathrm{~B}_{t} \mid \mathrm{B}_{t-1}\right)= \begin{cases}P(\text { breed again } \mid \text { success }) \phi_{\mathrm{A}} & \text { after successful breeding attempt } \\ P(\text { breed again } \mid \text { fail }) \phi_{\mathrm{A}} & \text { after failed breeding attempt }\end{cases}
$$

Base model

Probabilities of being dead (D):

$$
\begin{aligned}
P\left(\mathrm{D}_{t} \mid \mathrm{J}_{t-1}\right) & =1-\phi_{\mathrm{J}} \\
P\left(\mathrm{D}_{t} \mid \mathrm{PB}_{t-1}\right) & =1-\phi_{\mathrm{PB}} \\
P\left(\mathrm{D}_{t} \mid \mathrm{B}_{t-1}\right) & =1-\phi_{\mathrm{A}} \\
P\left(\mathrm{D}_{t} \mid \mathrm{NB}_{t-1}\right) & =1-\phi_{\mathrm{A}} \\
P\left(\mathrm{D}_{t} \mid \mathrm{D}_{t-1}\right) & =1
\end{aligned}
$$

Death is a state typically unobservable.
10 birds reported dead at or near the colony +2 deaths reported from pelagic longline fisheries off Uruguay.

Base model

Probability R_{a} of a juvenile of age a returning to the colony:

$$
\begin{cases}R_{a}=0 & \text { for } 1 \leq a<3 \\ R_{a}=P(\text { first return } \mid \text { age }=a) & \text { for } 3 \leq a<8 \\ R_{a}=P(\text { first return } \mid \text { age } \geq 8) & \text { for } a \geq 8\end{cases}
$$

Probability B_{a} of breeding for the first time at age a :
$\begin{cases}B_{a}=0 & \text { for } 1 \leq a<6 \\ B_{a}=P(\text { first breeding } \mid \text { age }=a) & \text { for } 6 \leq a<11 \\ B_{a}=P(\text { first breeding } \mid \text { age } \geq 11) & \text { for } a \geq 11\end{cases}$

Base model

Probability of being at the colony:

$$
\begin{aligned}
P\left(\mathrm{C}_{t} \mid \mathrm{J}_{t}\right) & =0 \\
P\left(\mathrm{C}_{t} \mid \mathrm{PB}_{t}\right) & =\gamma_{\mathrm{PB}} \\
P\left(\mathrm{C}_{t} \mid \mathrm{NB}_{t}\right) & =\gamma_{\mathrm{NB} \mid \mathrm{S}}, \text { for adults who bred successfully the previous year } \\
P\left(\mathrm{C}_{t} \mid \mathrm{NB}_{t}\right) & =\gamma_{\mathrm{NB} \mid \mathrm{F}}, \text { for adults who did not breed successfully the previous year } \\
P\left(\mathrm{C}_{t} \mid \mathrm{B}_{t}\right) & =1 \\
P\left(\mathrm{C}_{t} \mid \mathrm{D}_{t}\right) & =0 .
\end{aligned}
$$

Increasing model complexity

- Adult survival may vary between males and females

$$
\operatorname{logit}\left(\phi_{M}\right)=\operatorname{logit}\left(\phi_{F}\right)+\beta_{M}
$$

- Senescence - Survival declines with age

$$
\operatorname{logit}\left(\phi_{a}\right)= \begin{cases}\operatorname{logit}\left(\phi_{6}\right) & \text { for } 1 \leq a<6 \\ \operatorname{logit}\left(\phi_{6}\right)+\alpha_{\mathrm{A}}(a-6)+\beta_{\mathrm{A}}(a-6)^{2} & \text { for } a \geq 6\end{cases}
$$

- Inter-annual variation in survival
- Year as fixed effect
- Year as random effect

Model selection

Model	Deviance		\triangle DIC
	Mean	Variance	
$S_{J}\left(\right.$ year_re), $S^{\text {PB }}$ (year_re), $S_{\text {A }}$ (age+year_re)	3079.10	548.40	0.00
$\mathrm{S}_{\mathrm{J}}(),. \mathrm{S}_{\text {PB }}(),. \mathrm{S}_{\text {A }}$ (age+year_re)	3078.90	566.81	9.01
$\mathrm{S}_{J}(),. \mathrm{SPB}^{\text {(.) }}$) $\mathrm{S}_{\mathrm{A}}($ age $)$	3082.64	559.60	9.14
$\mathrm{S}_{\mathrm{J}}(),. \mathrm{S}_{\mathrm{PB}}(),. \mathrm{S}_{\mathrm{A}}($.	3087.27	555.73	11.83
$\mathrm{S}_{J}(),. \mathrm{S}_{\mathrm{PB}}(),. \mathrm{S}_{\mathrm{A}}($ sex+age $)$	3082.64	566.48	12.58
$S_{J}\left(\right.$ year_re), $S_{P B}$ (year_re), S_{A} (year_re)	3083.95	565.01	13.16
$\mathrm{S}_{\mathrm{S}}\left(\right.$ year_re), $\mathrm{S}_{\text {PB }}$ (year_re), $\mathrm{S}_{\mathrm{A}}($ sex+age+year_re)	3078.91	577.59	14.41
$\mathrm{S}_{\mathrm{J}}(),. \mathrm{S}_{\text {PB }}(),. \mathrm{S}_{\mathrm{A}}$ (year_re)	3083.24	569.45	14.66
$\mathrm{S}_{J}(),. \mathrm{S}_{\text {PB }}(),. \mathrm{S}_{\mathrm{A}}($ sex+age+year_re)	3078.59	582.92	16.74
$\mathrm{S}_{J}($ year $), \mathrm{S}_{\text {PB }}($ year $), \mathrm{S}_{\mathrm{A}}($ age + year $)$	3172.26	747.69	192.81

Best model: senescence, random annual variations, no gender difference

Parameter	Mean	95\% c.i.	
		Lower limit	Upper limit
Juvenile survival	0.933	0.908	0.966
Pre-breeder survival	0.966	0.950	0.980
Adult survival - overall	0.950	0.941	0.959
6 year-old	0.976	0.963	0.988
20 year-old	0.968	0.957	0.979
40 year-old	0.915	0.879	0.946
Mean age at first return	4.813	4.631	5.058
Mean age at first breeding	8.851	8.532	9.291
$\gamma_{\text {NB }} \mid$ fail	0.954	0.917	0.979
$\gamma_{\text {NB }} \mid$ success	0.162	0.129	0.195
$\gamma_{\text {PB }}$	0.991	0.982	0.997
P (breed again\|fail)	0.828	0.789	0.864
P (breed again\|success)	0.006	0.001	0.015
P (breed\|non-breeder)	0.791	0.757	0.823
Proportion of adults breeding	0.567	0.565	0.569

Model fit

Age at first return

Age at first breeding

Model fit

Distribution of age classes with age

Senescence

Adult survival declines with age after 20 years.

Inter-annual variability

No trend over time \Rightarrow No fundamental change in conditions.

Limitations

- Extrapolation of survival rate to the whole species unclear
- Management of the colony
- Potentially different foraging area
- But existing estimate from the Chathams is similar (0.952)
- Local survival rate
- Emigration to Chatham Islands not included in model
- One case of a bird from Taiaroa Head found breeding in the Chathams
- 27 visitors or immigrants from the Chathams to Taiaroa

Population size and growth

Current total population size at Taiaroa Head exceeds 200 individuals.

Total population vs. annual breeding pairs

$N / N_{\text {BP }}=7.65$ (95% c.i.: $5.03-11.64$)
Highly variable between years.

Risk assessment update

Slight decrease in the PBR_{1} with the updated estimates of adult survival and age at first reproduction, From 396 (95% c.i.: $164-782$) to 316 (95% c.i.: 161-550)

Slight increase in the risk ratio (fatalities $/ \mathrm{PBR}_{1}$), from 0.29 (95% c.i.: $0.12-0.7$) to 0.35 (95% c.i.: 0.17-0.74).

However, same probability of fatalities exceeding PBR_{1} (0.3\%).

Conclusions

- Updated estimates in concordance with previous estimates.
- No detection of a trend over time in survival.
- The Taiaroa Head population doubled in the last 20 years.
- Long-term monitoring is essential, and Taiaroa Head provides a unique opportunity for research (e.g. density-dependence).

Acknowledgments

Peter Dillingham for sharing his multi-state capture-recapture model of Gibson's albatross.
Sebastián Jiménez for his reports of albatross captures in Uruguayan longline fisheries.
Johanna Pierre and Katrin Berkenbusch for their comments and edits on the manuscript.
L.E. Richdale, S. Sharpe, A. Wright, and other former and current staff for their great work at the Taiaroa Head colony.

This project was funded by the Department of Conservation's Conservation Services Programme (www.doc.govt.nz/csp) project POP2011-09, partially through a levy on the quota holders of relevant commercial fish stocks.

Photos (Creative Commons on Flickr): davidbrewster, rrriles, nznationalparty Photo of L. Richdale: Otago Daily Times

