BCBC2019-05

Occurrence of prey species identified from remains in regurgitated pellets from king shags in 2019 and 2020

Progress report

Chris Lalas & Rob Schuckard

Bird photos – Rob Schuckard Fish photos – The fishes of NZ New Zealand king shag – designated as Nationally Endangered

Very small distribution: restricted to Marlborough Sounds

Very small but fairly stable population size: estimates from 2020 = 815 individuals and 277 nests

Foraging behaviour

- Exclusively marine
- Solitary
- Typical depths 20 60 m
- Demersal
- Target flatfish

Source of prey remains: regurgitated pellets

Shags regurgitate one pellet daily Pellets contain robust/undigestible prey remains

One published king shag diet study: Comprehensive analysis of 22 pellets Diet dominated by witch (*Arnoglossus scapha*)

Our present analysis for 215 pellets Purpose: for comparison with DNA diet analysis Method: restricted to frequency of occurrence

- = presence/absence of species in pellets
- Frequency of occurrence overestimates importance of
 - relatively small species
 - species taken in relatively small amounts

Analysis of prey remains in pellets

'Prey remains analysis' =
'Hard parts analysis' plus soft bits

Here examples of decalcified crustacean exoskeletons

Theme: broad range in type of prey remains

Werner SCHWARZHANS

A comparative morphological treatise of recent and fossil otoliths of the order Pleuronectiformes

Edited by Dr. Friedrich H. PFEIL

Figs. 884-886: Peltorhamphus novaezeelandiae GÜNTHER 1862 - 15 × Fig. 887: Peltorhamphus latus JAMES 1972 - 15 ×

Peltorhamphus latus JAMES 1972 Fig. 887

Investigated otoliths: 1 otolith (left side) (paratype) from the Tasman Bay, New Zealand, 41°0'S/ 173°7°E, BMNH 1970.12.15.3-5.

Discussion: Similar to P. novaezeelandiae but with very shallow middorsal portion and with clearly separated colliculi. Also the sulcus is rather wide.

Distribution: New Zealand.

336

Peltorhamphus tenuis JAMES 1972 Figs. 895-899

Investigated otoliths: 1 otolith (left side, fig. 895) (paratype) from Pegasus Bay, New Zealand, 43°27'S/172°7'E, BMNH 1970.12.15.10-11 and 5 fossil specimens (figs. 896-899) from the Pliocene, Wanganuian of Martinborough, New Zealand north island.

A GUIDE TO THE IDENTIFICATION OF FISH REMAINS FROM NEW ZEALAND ARCHAEOLOGICAL SITES

Foss Leach

Family	Common C		ccurrence	
	name	taxon	cumulative	
Bothidae	Lefteye flounders	77%	77%	

New Zealand crested flounder Lophonectes mongonuiensis

Family	Common	Occurrence	
Гапшу	name	taxon	cumulative
Bothidae	Lefteye flounders	77%	77%
Rhombosoleidae	Righteye flounders	51%	86%

28% Lemon sole *Pelotretis flavilatus* 22% Flounder *Rhombosolea* species 21% Sole *Peltorhamphus* species

Family	Common	Occurrence	
	name	taxon	cumulative
Bothidae	Lefteye flounders	77%	77%
Rhombosoleidae	Righteye flounders	51%	86%
Percophidae	Opalfish	38%	89%

Opalfish *Hemerocoetes monopterygius*

Family	Common	Occurrence	
Ганну	name	taxon	cumulative
Bothidae	Lefteye flounders	77%	77%
Rhombosoleidae	Righteye flounders	51%	86%
Percophidae	Opalfish	38%	89%
Tripterygiidae	Triplefins	26%	89%

Triplefins most likely *Forsterygion* &/or *Matanui* spp. especially *M. profundum*

Family	Common	Occurrence	
ганшу	name	taxon	cumulative
Bothidae	Lefteye flounders	77%	77%
Rhombosoleidae	Righteye flounders	51%	86%
Percophidae	Opalfish	38%	89%
Tripterygiidae	Triplefins	26%	89%
Monacanthidae	Leatherjacket	25%	97%

Leatherjacket *Meuschenia scaber*

Family	Common	Occurrence	
Ганну	name	taxon	cumulative
Bothidae	Lefteye flounders	77%	77%
Rhombosoleidae	Righteye flounders	51%	86%
Percophidae	Opalfish	38%	89%
Tripterygiidae	Triplefins	26%	89%
Monacanthidae	Leatherjacket	25%	97%
Sebastidae	Jock stewart	22%	99%

Jock stewart *Helicolenus percoides*

King shag prey: Fish species distribution maps across the broader Marlborough Sounds

Prepared for Ministry of Primary Industries

September 2017

1 Introduction

The National Institute of Water and Atmospheric Research (NIWA) was contracted by the Ministry for Primary Industries (MPI) to provide fish density and distribution maps for five prey species (Witch, Opalfish, Lemon Sole, NZ Sole and Triplefins) of the New Zealand King Shag, including three size classes for four of these prey species (Witch, Opalfish, Lemon sole, NZ sole) for the broader Marlborough Sounds Region.

NIWA - enhancing the benefits of New Zealand's natural resources

WWW,THWB.CO.DJ

Figure 2: Examples of juvenile and small fishes collected in NIWA's little beam-trawl net used to sample benthic fishes across the Marlborough Sounds. Fish shown here include witch, opalfish, lemon sole, triplefins and sole (see maps below), as well as blue cod and tarakihi – the two primary target species of this survey.

Comparison of scope of outcomes between prey remains analysis and DNA analysis	Prey remains analysis	DNA analysis
Definitive differentiation between primary and secondary prey	No	No
Detection of prey species that lack robust remains	Inconsistent	Yes
Number of prey species per pellet	Yes	Yes
Number of prey items per pellet & proportion of diet by number	Yes	No
Lengths of prey items	Yes	No
Biomass of prey items	Yes	No
Proportion of diet by biomass of prey species per pellet	Yes	RRA
Total biomass of all prey per pellet = daily intake	Yes	Not yet

RRA = relative read abundance, an indicator of the relative importance of each species

Determining the diet of New Zealand king shag using DNA metabarcoding

Aimee van der Reis and Andrew Jeffs

What is DNA metabarcoding?

AGTACGATATATT

AGTAAAAGGGTT

• GGCCTATATATAG

Witch – Arnoglossus scapha

Southern lemon sole - Pelotretis flavilatus

Smooth leatherjacket - Meuschenia scaber •

DNA metabarcoding

Sex ID

- Host DNA from gut content used
- Single band for males (600 bp)
- Double band for females (450 bp and 600 bp)

F M M F

Identification of hard parts highly reliant on:

- Sufficient morphological structure
- Taxonomic expertise

DNA metabarcoding:

- No taxonomic expertise
- No morphological structure
- Species level ID

69 females, 109 males and 7 unidentified

Pellet content results

(12%; flatworms)

Pellet content results

Pellet content results

Dietary:

Crabs

Non-dietary:

Parasites

3

Feather mites

Significant difference - Area

Significant difference - Sex

New record using DNA

- Crested flounder 43% samples
- Easily mistaken for that of small witch
- DNA sequences for these two species vary by ~15%
 - These two species of fish are reliably distinguished using DNA.

Witch Arnoglossus scapha

- Detect dietary and non-dietary items
 - New records: Crested flounder, John Dory and the big-belly seahorse
- The frequency of occurrence dietary species detected is comparable to the microscopic study
- Sex ID the birds that regurgitated the pellet
- Potential to genetically identify individuals too

