POP2012-02

New Zealand sea lion - demographic assessment of the causes of decline at the Auckland Islands

7a model results

CSP Technical Working Group

August 2013

Jim Roberts, Dan Fu, Chris Francis, Ian Doonan

NIW/A

Optimal model configuration

- Annual survival estimates for age groupings 0, 1, 2-5, 6-14, 15+
- Survival at Age 15+ is time-invariant
- All others have separate estimate for years where data informative
- Annual breeding probability for Age 4+ individuals
- Separate estimates for breeders and non-breeders
- All time-varying (1998-2011)
- Annual resighting probability of age groupings 1-2, 3, 4I-5I, 6I, 7I, B, N
- Separate estimates for breeders and non-breeders
- All time varying 1999-2011
- Decline in resighting probability estimated of breeders after mid-2000s suggests a problem as nearly all breeders should be resighted in every year since 1999. This can be fixed to 1 - all resighted.

Fits to tagging observations - optimal model

Model run	Survival estimates Age	Survival Yr groups	Breeding Prob estimates Age	Breeding Prob Yr groups	Resighting prob estimates Age	Resighting prob Yr groups	Maturation	LL	params	AIC
7 a	0, 1, 2-5, 6-14, 15+	15+ time invariant	4+(P), 4+(N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	1-2 time invariant	Time varying	-7976.2	178	16,308
6 b	0, 1, 2-5, 6-14, 15+	15+ time invariant	$4+(\mathrm{P}), 4+(\mathrm{N})$	Separate estimates all yrs	1-2,3,4-5,6,7,N	1-2 time invariant		-8023.6	152	16,351
6d	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	functional form	a4 \& b4 time invariant	1-2,3,4-5,6,7,N	1-2 time invariant		-8022.8	154	16,354
6 a	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	$4+(\mathrm{P}), 4-14(\mathrm{~N}), 15+$ (N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	1-2 time invariant		-8020.5	159	16,359
5 j	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+(P), 15+(N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	1-2 time invariant		-8017.1	166	16,366
4 m	0, 1, 2-5, 6-14, 15+	0 \& 15+ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-7999.6	185	16,369
5 m	0, 1, 2-5, 6-14, 15+	$6+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	1-2 time invariant		-8032.2	153	16,370
6c	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	functional form	Separate estimates all yrs	1-2,3,4-5,6,7,N	1-2 time invariant		-8019.3	166	16,371
51	0, 1, 2-5, 6-14, 15+	$0 \& 15+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	1-2 time invariant		-8036.4	149	16,371
5d	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+(P), 15+(N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	Separate estimates all yrs		-8008.5	179	16,375
5 b	0, 1, 2-5, 6-14, 15+	15+ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4-5,6,7,N	Separate estimates all yrs		-7999.3	192	16,383
5 h	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	4-5 time invariant		-8023.8	169	16,386
$4 i$	0, 1, 2-5, 6-14, 15+	15+ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-7992.4	202	16,389
4k	0, 1, 2-5, 6-14, 15+	2-5 \& 15+ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-8008	187	16,390
$5 f$	0, 1, 2-5, 6-14, 15+	15+ time invariant	4-14 (P), 4-14 (N), 15+(P), 15+(N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	7 time invariant		-8025.2	170	16,390
5 i	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	3 time invariant		-8027.5	168	16,391
3	0, 1, 2-5, 6-14, 15+	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-7987.6	208	16,391
4 j	0, 1, 2-5, 6-14, 15+	$6+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-8007.2	189	16,392
5 g	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	6 time invariant		-8026.4	170	16,393
4 h	0, 1, 2-5, 6+	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+(P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-8001.7	201	16,405
4 e	0, 1, 2-4, 5-14, 15+	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-7995.1	208	16,406
4d	0, 1, 2, 3-5, 6-14, 15+	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-7981.1	222	16,406
5 e	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+(P), 15+ (N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	N time invariant		-8038.7	166	16,409
4 g	0, 1, 2-14, 15+	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+(P), 15+(N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-8010.7	194	16,409
5 k	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1-2,3,4-5,6,7,N	0-7 time invariant		-8087.6	127	16,429
4c	0, 1, 2, 3, 4, 5, 6-14, 15+	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-7977	243	16,440
5a	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4-7, N	Separate estimates all yrs		-8053.7	175	16,457
4 a	u1, u3, u4, max (u3) at age 3	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+(P), 15+(N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-8140	145	16,570
4 b	u1, u3, u4, max (u3) at age 2	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+(P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-8141.1	144	16,570
5 c	0, 1, 2-5, 6-14, 15+	$15+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4-6,7,N	Separate estimates all yrs		-8411.4	182	17,187
4 f	0-1, 2-5, 6-14, 15+	Separate estimates all yrs	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-8476.6	191	17,335
41	0, 1, 2-5, 6-14, 15+	1 \& $15+$ time invariant	4-14 (P), 4-14 (N), 15+ (P), 15+ (N)	Separate estimates all yrs	1,2,3,4,5,6,7,N	Separate estimates all yrs		-8483.1	186	17,338

Taihoro Nukurangi

Fits to tagging obs - optimal model

Pups dead at tagging

－Some pups recorded as dead at the time of tagging，e．g．disease mortalities in 2002 \＆ 2003 －we are overestimating Surv0 if these are not accounted for
－We included additional＂phantom tag＂observations in SeaBird input files－ animals that are tagged and then not observed again
－SeaBird decreases Surv0（and not resighting probability－prob．resight ages $1 \& 2=0.104$ with phantom tags $\& 0.105$ without）．Minor effect on Surv1 in のヘロの

MCMC runs 400,000 length; 400 samples - survival

MCMC runs - resighting probability

Taihoro Nukurangi

MCMC runs - maturation

MCMC runs - breeding probability

- Probable cohort effects on breeding probability (1998 \& 2000 cohort)
- Also year effects e.g. 2008 (low survivorship too)

Retrospective analysis

Retrospective analysis

Taihoro Nukurangi

Tag loss model (tag observations only)

- Partitions for 2 tags, 1 tag and 0 tag (PresightOtag set to zero)
- Retagged animals - assume same tag frequency in all subsequent years
- Two parameters for probability of losing 1 tag in a year (time-invariant):
- $\mathrm{T}_{\text {age } 0}=0.085 ; \mathrm{T}_{\text {age1+ }}=0.049$
- Compares with $0.15(2>1) \& 0.09(1>0)$ MacKenzie \& Chilvers (2012)

Fitting to pup count observations with tag loss

- C.V. of 0.03
- Good fits (including low pup counts in 2009 - low prob puppers pupping)
- Minimal conflict with estimates from tag only though increased survival of groupings Age2+
- $\mathrm{T}_{\text {ageo }}=0.103 ; \mathrm{T}_{\text {age }}=0.063$

Fitting to age distribution observations

- Good fits to lactating female age distribution observations 1998 to 2001 (Childerhouse et al 2010)

- Only really informative for survival at ages 0-5
- Confirms strong cohorts (1990-1993) evident from mark-resighting analysis
- Cohort effect on survival of animals - not just tags!

Summary model development

- Goals of demographic modelling
- Conflict between observations
- More pups born than calculated from tag only survival and pupping rates
- Relocation effects?
- Underestimating tag shedding?
- Biases and uncertainty around estimates
- Final model development

Proximate causes of "population decline"

Survival
-Decline in survival at ages 0 and 1 relative to strong cohorts in 1990-93
-Some very weak cohorts e.g. 1998 (disease epidemic year) with reduced survival at different ages
-2008 may be another very weak cohort
-Cohort (e.g. 1998) \& year (e.g. 2007) effects on adult survival
-A need to better understand biology of juvenile animals - low resighting probability at breeding rookeries (~ 0.1 per annum)

Pupping

-Year effects on pupping rates, e.g. 2009, cause single-year declines in pup production. Also potential cohorts effects.

- Increased age at first pupping during period of decline \& low proportion pupping each year for an otariid species (0.6-0.7)
-Do non-pupping animals breed then abort? Do they skip breeding/suckle yearlings?

References

Childerhouse, S. J., Dawson, S. M., Slooten, E., Fletcher, D. J., Wilkinson, I. S. (2010). Age distribution of lactating New Zealand sea lions: Interannual and intersite variation. Marine Mammal Science, 26: 123-139.

Gilbert, D.J., Chilvers B.L. (2008). Final report on New Zealand sea lion pupping rate. POP2006-01. Objective 3. Analysis from sea lion database to estimate pupping rate and associated parameters.

MacKenzie, D.I. (2012). Estimation of Demographic Parameters for New Zealand Sea Lions Breeding on the Auckland Islands - Final Report: 1997/982010/11. Objective 3: POP2010/1

