MIT2022-05: Large vessel trawl warp mitigation

Presentation to DOC CSP Technical Working Group 9 March 2023

Prepared by: Kath Large **Date:** 9 March 2023

Project context

- Mandatory mitigation in large vessel trawl fisheries were introduced in the early 2000s, but mitigation requirements have remained largely unchanged for several years.
- Whilst substantial reductions in seabird bycatch estimates were documented in the 2000s, there has been little evidence for further bycatch rate reduction in more recent years.
- Since the introduction of mandatory mitigation, substantial new data on bycatch between vessels and across sectors of the fleet is available from relatively high levels of observer coverage.
- Of particular note, some mitigation used, i.e., bird bafflers, are not currently recognised as best practice globally.

Project context

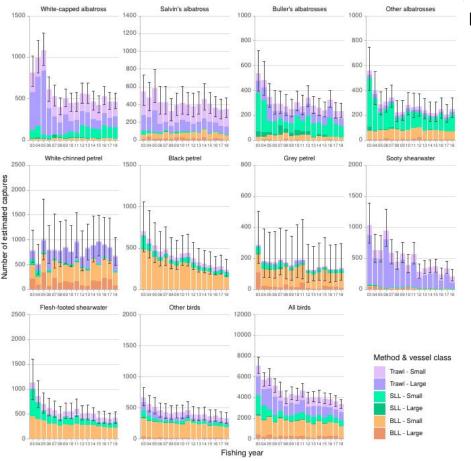


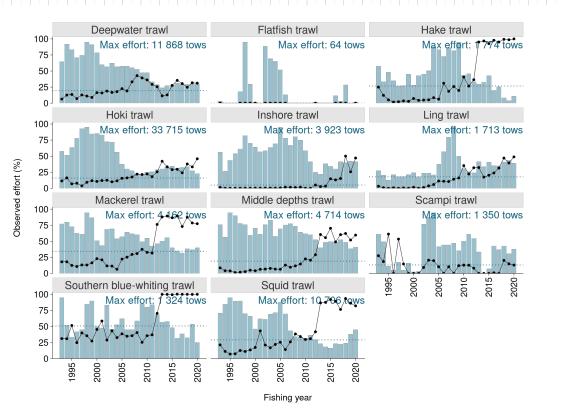
Figure 6 from Abraham and Richards (2020)

- Time series of the number of estimated captures for the seabird species groups and for all birds for the 2002–03 to 2017–18 fishing years.
- Estimates are shown by fishing method and vessel size class.
- Cut-off lengths for small and large vessel size classes were 45 m, 34 m, and 28 m, for surface-longline (SLL), bottom- longline (BLL), and trawl fishing, respectively.
- Coloured bars indicate the mean number of captures, error bars are the 95% credible interval in the total number of estimated captures within each fishing year.
- Note different y-axis scales.

Investigate whether the recorded designs of the mitigation devices are impacting their effectiveness.

- Determine whether modelling can identify optimal device combinations or configurations based on available data (Part1)
- Characterise and summarise the mitigation device data, which includes device measurements (Part 2)
 - Using the device data characterisation, liaise with stakeholders to determine:

 ideal device design and deployment;
 whether device design details are evident in the data;
 how the data could best be summarised to inform mitigation effectiveness; and,
 how the data collection and reporting can be improved to better inform mitigation effectiveness.

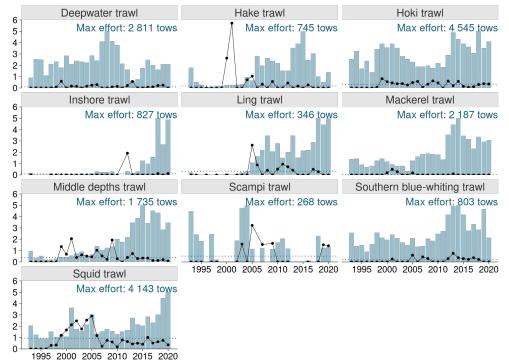


Observed large vessel trawl effort

Number of observed tows (green), with seabird captures (grey), and with warp captures (pink), by fishery group, 1993-2020


0	10000	20000	30000	40000	50000	60000	70000	80000
		Hoki tra	wl					
		Squid ti	rawl					
		Deepwa	iter trawl: BOE,	CDL, OEO, ORF	l, SSO, Other			
		Mackere	el trawl: EMA, JM	1A				
		Middle	depths trawl: B/	AR, BNS, BYX, F	RO, RBY, SKI, SF	PD, SPE, SWA, V	VAR, WWA, Other	
		Souther	n blue-whiting	trawl				
		Hake tra	awl					
		Inshore	trawl: ELE, GUR	, JDO, RCO, TA	R, TER, SNA, STA	A, Other		
		Ling tra	wl					
		Scampi	trawl					

- Proportion of large vessel trawls that were observed (black line).
- Total effort (blue bars)
- By fishery and fishing year


- Proportion of observed effort with observed seabird captures (black line).
- Observed effort (blue bars)

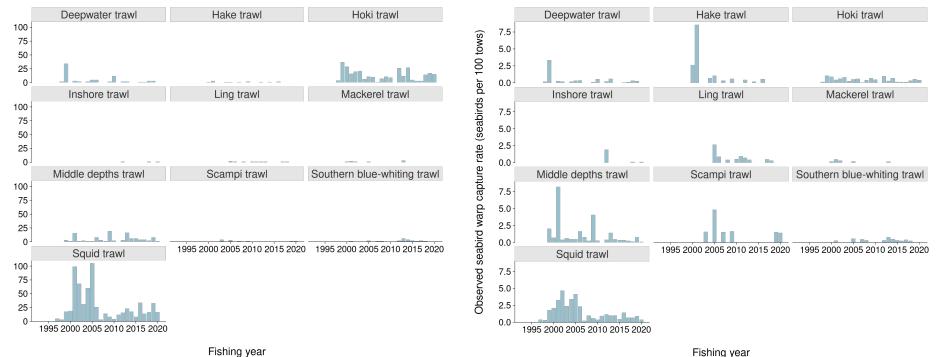
Fishing year

MIT2022-05: Large vessel trawl warp mitigation

7

- Proportion of observed effort with seabird warp captures (back line)
- Observed effort (blue bars)

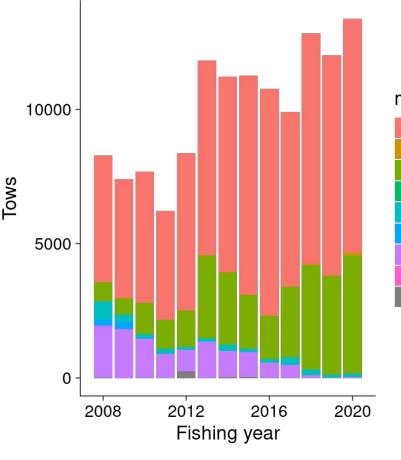
Fishing year


Observed effort with seabird warp captures (%)

Observed seabird warp captures (n)

Observed warp captures (left) and warp capture rates (right) in observed large vessel trawls

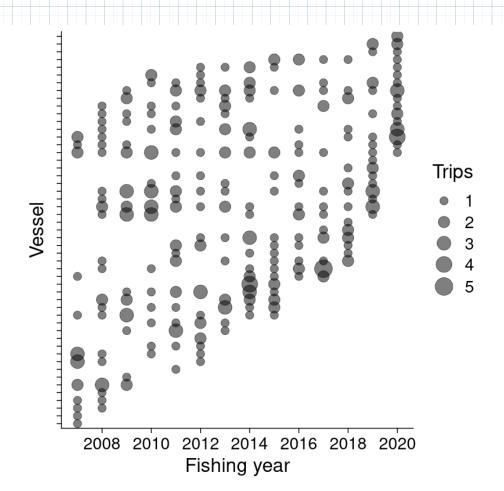
Number of tows with warp mitigation use recorded
B = baffler only T = tori only W = warp scarer only BT = baffler and tori line BS = baffler and warp scarer TS = tori line and warp scarer BTS = baffler, tori line and warp scarer


- Reliable recorded since 2008
- Not recorded an None records are probably misreported and not true "nones".

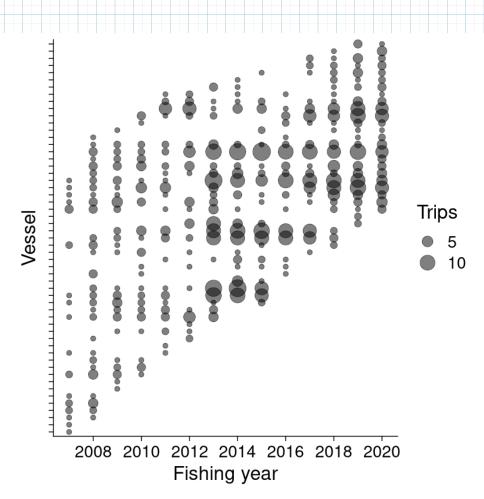
fyea	r Not_recorded	None	В	т	S	ВТ	BS	TS	BTS
1993	6429	-	-	-		-			
1994	4 6657	-	-	-		-			
199	5 4676	-	-	-		-			
199	6 4052	-	-	-		-			
199	7 4534	-	-	-		-			
1998	6418	-	-	-		-			
1999	9 6695	-	-	-		-			
200	6779	-	-	-		-			
200	1 8753	-	-	-		-			
2002	2 7103	-	-	-		-			
2003	6453	-	-	-		-			
2004	4 6364	-	-	-		-			
200	5 7587	-	-	-		-			
200	6183	-	-	-		-			
200	7 4817	377	993	870	55	133			
200	3 5	697	4738	1941	207	696		12	
2009	9 -	277	4447	1803	259	605		15	
201) -	152	4878	1458	12	1176	1		
201	1 -	189	4043	904		1077			
2012	2 245	104	5874	803		1354			
201	- 3	127	7265	1350	1	3073	1		
2014	4 37	250	7281	959		2695			
201	5 29	134	8178	929		1993			
201	5 -	127	8436	574		1619			
201	7 1	286	6508	477		2628			
201	3 1	225	8595	92		3866	58		
2019	9 -	124	8211	4		3679			1
202) -	137	8720	25		4406	90		2

Recorded warp mitigation use for observed trawls

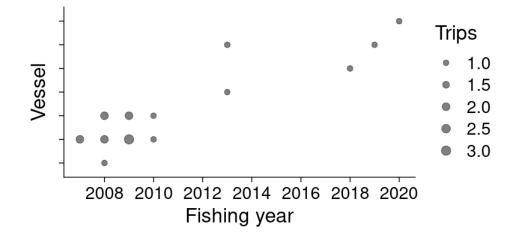
- 2008 to 2020
- Use of baffler only the most prevalent form of mitigation gear
- Use of tori line only has decreased with the increase in tori lines used in conjunction with bafflers


mitigation_gear

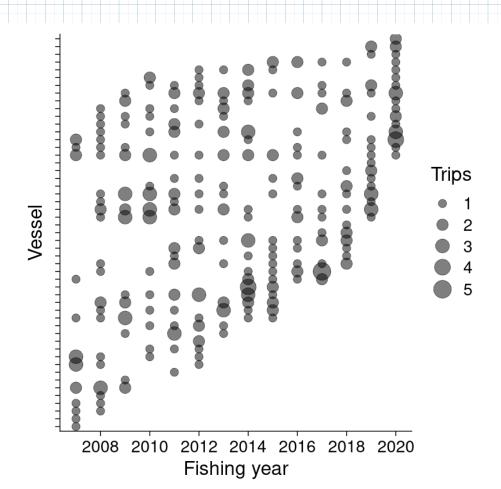
baffler_only baffler+scarer baffler+tori baffler+tori+scarer None scarer_only tori_only tori+scarer NA

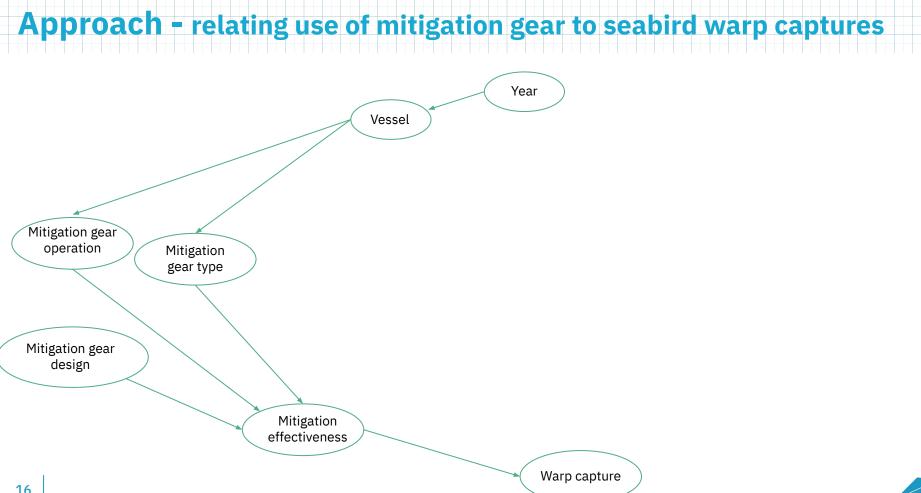


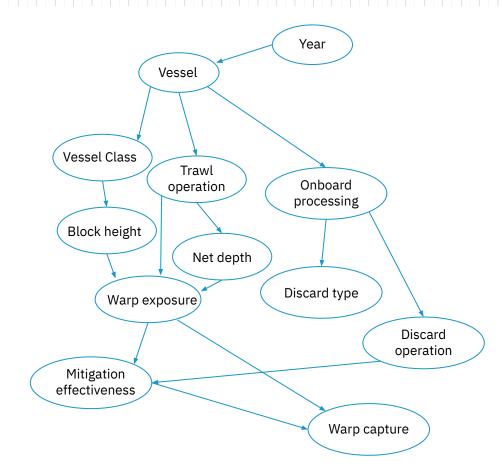
- Baffler use by vessel and year
- Good coverage across years and fleet

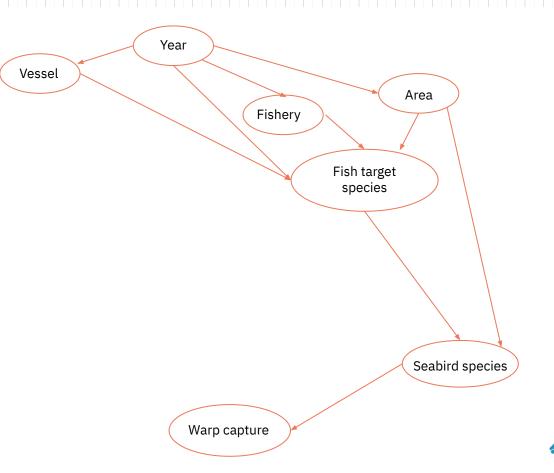


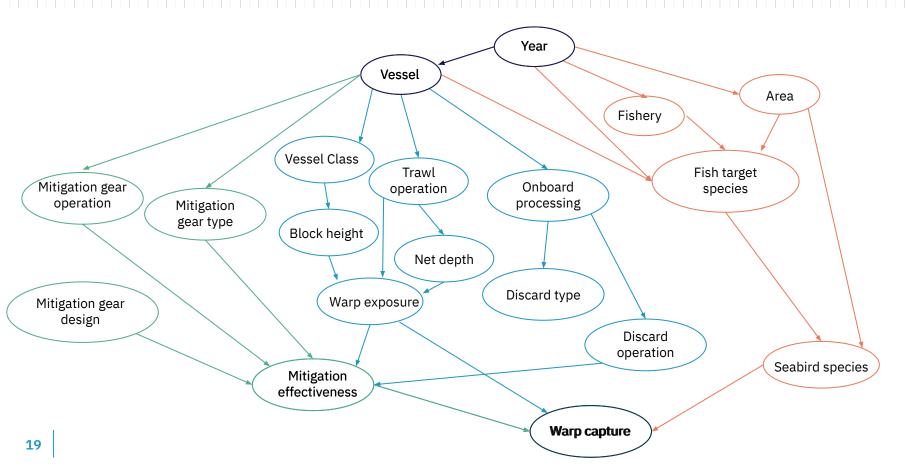
- Tori line use by vessel and year
- Good coverage across years and fleet

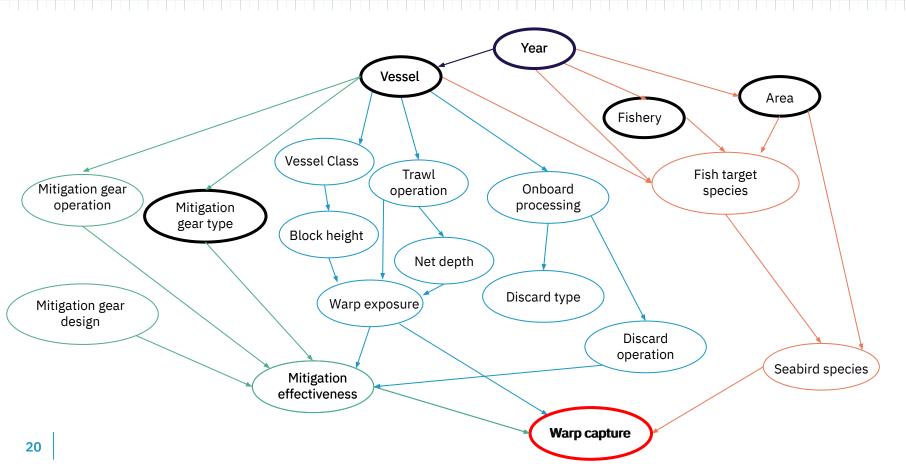

- Warp scarer use by vessel and year
- No coverage across years and fleet






- Mitigation gear not recorded
- More work required to reconcile these records





Using modelling to identify optimal device combinations or configurations based on available data - Part 1

Captures were estimated from observer catch rates using a generalised linear mixed model:

- covariates included fishing year, fishery, area and vessel as random effects, with mitigation gear included as a categorical fixed effect (at levels baffler-only, tori-only, baffler+tori)
- models were run with data aggregated to year, area, fishery and mitigation gear
- data included for fishing years 2008 to 2020, and excluding data where warp mitigation gear was not recorded

Captures were estimated from observer catch rates using a generalised linear mixed model:

- estimated within a general Bayesian linear model framework "brms"
- used a negative binomial model (often preferred for highly skewed distributions with large amounts of zeros)
- models were fitted with eight separate Markov Chain Monte Carlo chains with 3000 iterations, including a 1000 iteration burn-in period that was discarded from posterior samples
- convergence was judged by marginal and multivariate scale reduction factors (SRF) across the eight chains (at convergence of MCMC runs, the MSFR (or Rhat) is one)
- Model fit was evaluated by posterior predictive checks and leave-one-out information criterion (loo-ic) comparisons

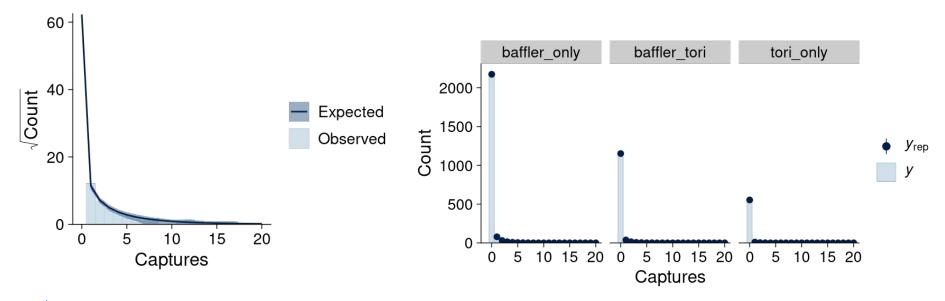
Model sets/hypotheses (using NB response):

Fleet (area, fishery, vessel, fishing year) vs mitigation gear

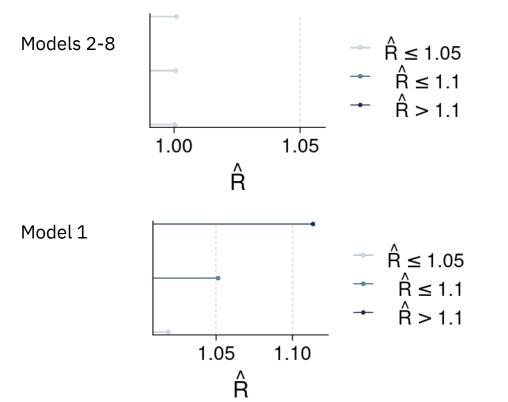
mod 1 captures | tows ~ mitigation_type mod 2 captures | tows ~ (1|area) + mitigation_type mod 3 captures | tows ~ (1|Fishery Group) + (1|area) + mitigation_type mod 4 captures | tows ~ (1|vessel) + (1|Fishery Group) + (1|area) + mitigation_type mod 5 captures | tows ~ (1|fyear) + (1|Fishery Group) + (1|area) + mitigation_type mod 6 captures | tows ~ (1|fyear) + (1|vessel) + (1|Fishery Group) + (1|area) + mitigation type

Fleet (area, fishery, vessel, fishing year) vs interaction of mitigation gear and fishing year or vessel

mod 7 captures | tows ~ (1|fyear) + (1|vessel) + (1|Fishery Group) + (1|area) + mitigation type + (1|vessel:mitigation_type) mod 8 captures | tows ~ (1|fyear) + (1|vessel) + (1|Fishery Group) + (1|area) + mitigation type + (1|fyear:mitigation_type) mod 9 captures | tows ~ (1|fyear) + (1|vessel) + (1|Fishery Group) + (1|area) + mitigation type + (1|fyear:mitigation_type) + (1|vessel:mitigation_type) + (1|vessel:mitigation_type)


- models 8 and 9 provided the best fit to the data
- these models included random effects for year and vessel, whereas the other models did not

Model	elpd_loo	se_elpd_loo	elpd_diff	se_diff	right side of formula
bmod8	-1,072.42	58.45	0.00	0.00	(1 fyear) + (1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear + (1 fyear:mitigation_gear)
bmod9	-1,072.86	58.44	-0.43	2.53	(1 fyear) + (1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear + (1 vessel_key:mitigation_gear) + (1 fyear:mitigation_gear)
bmod7	-1,075.22	58.63	-2.80	3.94	(1 fyear) + (1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear + (1 vessel_key:mitigation_gear)
bmod6	-1,075.32	58.67	-2.90	2.75	(1 fyear) + (1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear
bmod4	-1,078.68	58.83	-6.26	4.74	(1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear
bmod3	-1,106.11	60.11	-33.69	9.63	(1 fisheryGroup) + (1 area) + mitigation_gear
bmod5	-1,106.20	60.46	-33.78	9.73	(1 fyear) + (1 fisheryGroup) + (1 area) + mitigation_gear
bmod2	-1,112.91	60.04	-40.49	11.02	(1 area) + mitigation_gear
bmod1	-1,168.01	63.19	-95.59	15.74	mitigation_gear

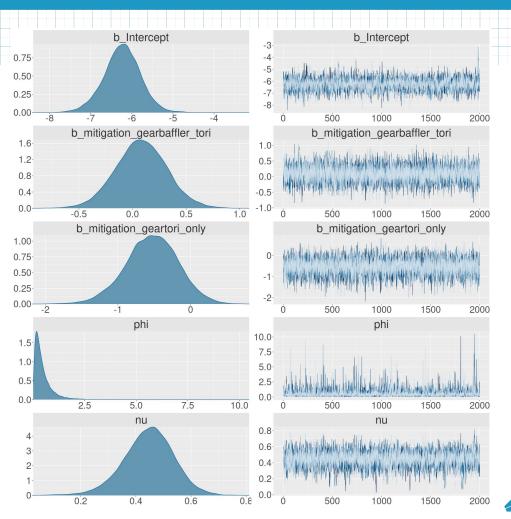


Posterior predictive checks for Model 8 shows the model fits the data well overall (left) and for each of the mitigation gear categories (right)

Model diagnostics

Rhat values were at or close to 1 for all variables in Models 2 to 8, indicating convergence

• Rhat values shown for the mitigation categories in Model 8


Rhat values were >1.05 for most variables in Model 1, indicating non-convergence for this model.

Model diagnostics

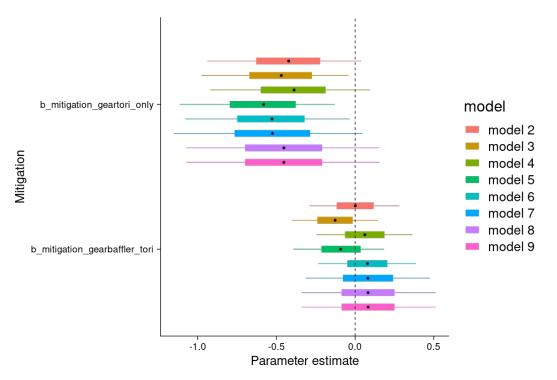
Model 8:

- Distribution and trace plots of the estimated values for the models main variables at each iteration
- Reasonably well mixing MCMC chains indicating convergence

Model results

- Model estimates and 95% credible intervals (in brackets) for the levels of mitigation gear
- Best performing models (8, 9, 7, 6) have consistent results, and all include an effect for vessel and for fishing year

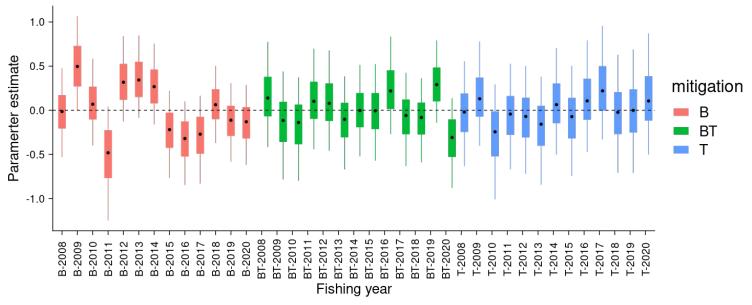
mods	baffler & tori	tori only	right side of forumla
bmod8	0.08 (-0.34 , 0.51)	-0.45 (-1.07 , 0.15)	(1 fyear) + (1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear + (1 fyear:mitigation_gear)
bmod9	0.09 (-0.41 , 0.59)	-0.47 (-1.17 , 0.2)	(1 fyear) + (1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear + (1 vessel_key:mitigation_gear) + (1 fyear:mitigation_gear)
bmod7	0.08 (-0.31 , 0.48)	-0.53 (-1.15 , 0.05)	(1 fyear) + (1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear + (1 vessel_key:mitigation_gear)
bmod6	0.08 (-0.24 , 0.39)	-0.53 (-1.08 , -0.03)	(1 fyear) + (1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear
bmod4	0.06 (-0.25 , 0.36)	-0.39 (-0.92 , 0.1)	(1 vessel_key) + (1 fisheryGroup) + (1 area) + mitigation_gear
bmod3	-0.13 (-0.4 , 0.15)	-0.47 (-0.98 , -0.04)	(1 fisheryGroup) + (1 area) + mitigation_gear
bmod5	-0.09 (-0.39 , 0.18)	-0.58 (-1.12 , -0.13)	(1 fyear) + (1 fisheryGroup) + (1 area) + mitigation_gear
bmod2	0 (-0.29 , 0.28)	-0.42 (-0.94 , 0.04)	(1 area) + mitigation_gear
bmod1	0.36 (0.09 , 0.68)	-0.35 (-0.79 , 0.19)	mitigation_gear



Model results

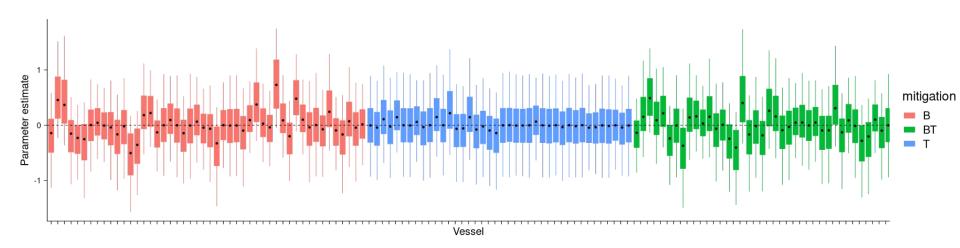
Model estimates and 95% credible intervals for the levels of mitigation gear, by model

- In general, compared to baffler use only, the use of tori lines is more effective
- The combination of bafflers and tori lines are slightly less effective than baffler use only
- Models 2, 3 and 5 did not include a vessel effect
- Model 4 did not include a year effect



Model 9 estimates and 95% credible intervals for the levels of mitigation gear by year

- Effectiveness of bafflers has improved, especially after 2015
- Effectiveness of tori lines (and tori lines used with bafflers) is less variable than that of bafflers only over time

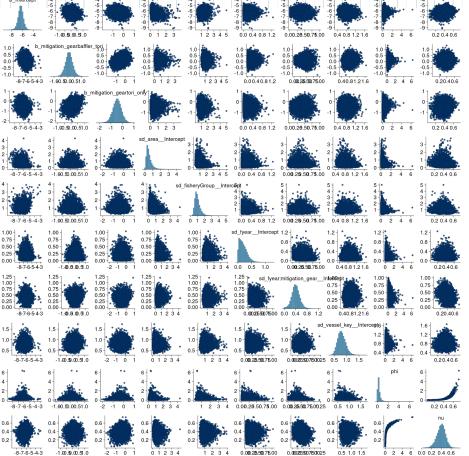


Model 9 estimates and 95% credible intervals for the levels of mitigation gear by vessel

- Effectiveness of tori lines is relatively consistent among vessels
- Effectiveness of bafflers is highly variable amongst vessels

- Modelling of catch rates in response to warp mitigation gear use, taking into account variability in fishery operations and species populations, shows a difference in effectiveness between the use of bafflers and tori lines
- These trends are highly variable by year, especially for baffler use, but less so since the mid 2010s, and perhaps indicate an increasing effectiveness of baffler gear in recent years
- The effectiveness of the introduction of mitigation gear is not modelled due to the lack of data available prior to 2008
- Investigation of mitigation device data may:
 - 1. provide information to inform the patterns in effectiveness indicated in Part 1; and
 - 2. enable more complex modelling of mitigation effectiveness.

Thanks to:


Richard Wells John Cleal Ben Steele Mortimer David Middleton Phil Neubauer Yvan Richards Ed Abraham CSP Technical Working Group

Additional model diagnostics

Model 8, pairs plot

• Good, no evidence of correlated variables

