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Executive summary 
 
Here we report the second stage in this project. Mathematical formulae are developed to allow 
the estimation of pupping rate for New Zealand sea lions from tag-resighting data. The 
method involves defining functions and their associated parameters that measure the 
likelihood of the behavioural observations. These functions are multiplied across all 
observations to produce total likelihood. A pupping rate function is defined and estimated, 
based on several parameters. A mortality function must also be defined to allow the pupping 
rate to be estimated. The method involves treating the observations as arising from mixtures 
of statistical distributions. This is necessary because not all animals can be identified as 
definite breeders or definite non-breeders each season. Our initial report (Gilbert 2007) 
indicated that cows could be placed into two categories, high- and low-fecundity animals and 
parameters will be estimated to account for this. In the third stage of this project we will 
minimise the total likelihood with respect to the parameters. Our primary result will be a 
smooth, domed function giving the pupping rate at age for female New Zealand sea lions that 
breed at Enderby Island. It will be a weighted average of functions for high- and low-
fecundity animals where the weightings will be the estimated proportions in each group. 
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1. Introduction 
Our initial report (Gilbert 2007) discussed the viability of estimating pupping rate for 
New Zealand sea lions from the available tag-resighting data. It concluded that good 
estimates were possible. Various features of the data were examined. Preliminary 
pupping rate estimates were presented and will not be repeated here. The present 
report documents the next step in the project, which is the development of a 
mathematical model to estimate pupping rate. Our goal is to describe pupping rate as a 
function of age and to estimate a set of parameters that determines the function. To 
allow this, a number of other parameters must also be estimated that describe 
observation and mortality processes. A function of age is developed to describe annual 
mortality. Then the likelihood formulae are developed that express the probabilities of 
making the observations that were actually made, conditional on the parameters. 
These are defined. The hypotheses underlying these likelihoods are discussed. 
Modelling of this sort is a process in which the steps: hypothesis testing, diagnosis and 
hypothesis reformulation, are repeated until satisfactory diagnostics are obtained. 
Some of the possible directions of hypothesis reformulation are mentioned. Our 
expectation is that a satisfactory model will emerge from which a pupping rate 
function will be estimated and that this will be broadly similar to the preliminary 
estimate but will deviate from it in ways discussed by Gilbert (2007). 
 

2. Model  
To estimate pupping rate, a statistical model is required to explain the variability in the 
numbers of behavioural observations. The model is governed by a set of parameters, 
which are estimated by maximum likelihood. A satisfactory model will fit both the 
observation means and the patterns of variability around those means. 
 
It is desirable to reduce the number of estimable parameters by expressing 
relationships in functional forms dependent on a few parameters. Over-
parameterisation leads to estimates that lack robustness and tend to show random 
variations in the data rather than underlying relationships. The preliminary estimate of 
pupping rate in Gilbert (2007) has implausible spikes at ages 9, 12, 16 and 19 years. 
Here we express both mortality and pupping rate as smooth functions of age. The 
functions are parameterised so that the parameters are meaningful. For example, β1 is 
the maximum pupping rate and it occurs for cows aged β2 years. 
 
Because adequate behavioural observations commenced in 2000, the only data used 
prior to that season are the tagging season and the recorded deaths. Positively 
identified deaths of tagged cows recorded outside the breeding season are included. 
Apart from these the model is fitted only to the 2000–2007 breeding season data.  
 
The breeding season behavioural observations are categorised into “Breeder”, 
“Probable breeder”, “Possible breeder” and “Unknown”. This gives a vector, the first 
element of which is binary (0 or 1) and the other elements are counts. This data vector 
may be all zeros for a given season if the cow is dead or if it is alive but not sighted 
during that season. If a cow is sighted in a subsequent season the first alternative can 
be ruled out of the analysis. 
 
The resighting effort is similar amongst seasons because the field trips are in most 
seasons about 85 days and are carried out according to a fixed routine. However the 
estimable parameter θ

%
 is used to account for any variability due to differences in 

effective resighting effort. This could be caused by differences in length of trip, 
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weather, size of team and extent of other activities undertaken. Whether this parameter 
significantly explains variance or correlates with trip length will be tested. 
 
The Poisson distribution is a simple statistical explanation for behavioural counts. All 
non-overlapping time periods (or amounts of resighting effort) of equal size have 
equal probabilities of containing an observation and these probabilities are 
independent of each other. The preliminary analyses suggested that the counts are 
over-dispersed, i.e. contain more very high and very low counts than would occur 
under the Poisson distribution. We will attempt to develop a good statistical 
explanation of the data based on the preliminary analyses. The behavioural 
observations come from a mixture of breeders and non-breeders. This can be 
characterised by a mixture of statistical distributions which will have a greater 
dispersion than if a single distribution were used. Except for observations where 
breeding can be inferred with certainty, the pupping rate (at age) determines the 
proportions of breeders and non-breeders in the mixture. The model must estimate 
both the pupping rate to determine the proportions in the mixture and the distributions 
that apply to each part of the mixture. Observations of cows nursing a pup contain 
many zeros and a non-zero distribution that is slightly over-dispersed (Figure 1). The 
zeros are largely for the non-breeders and the non-zeros the breeders. The frequency 
of non-zero observations of a cow with a pup show greater over-dispersion (Figure 2). 
Some non-zero counts for non-breeders are likely and so the distribution may perhaps 
be explained by a mixture of Poisson distributions of breeders and non-breeders. 
Observations of cows exhibiting no behaviour relevant to breeding are considerably 
over-dispersed (Figure 3). It appears that a mixture of Poisson distributions of 
breeders and non-breeders with different mean season frequencies would be 
insufficient to adequately explain this dispersion. We therefore propose to use the 
negative binomial distribution, which allows the variance of the counts to be a 
multiple of the mean (not equal to it as in the Poisson distribution). The negative 
binomial distribution could arise from heterogeneity in the behavioural observation 
means amongst both breeders and non-breeders. We will assume that the behavioural 
counts in each part of the mixture are distributed according to the negative binomial 
distribution. 
 
So far we have assumed that whether a cow breeds in a season depends only on its 
age, not on its previous breeding history. We might expect that the physiological 
burden of bearing a pup would reduce the probability of a cow bearing a pup in the 
following season. The data does not support this hypothesis (Figure 4). Cows are more 
likely to bear a pup in a given season if they bore one in the previous season. It 
appears instead that some cows exhibit high fecundity by breeding frequently, whereas 
others breed only occasionally. The sequences of observations for individuals support 
this hypothesis. We will therefore assume that some proportion of the population (to 
be estimated) is highly fecund. The low-fecundity females will have a lower pupping 
rate function than those of high fecundity and both will be estimated. 
 
It also appears that some cows are inherently more readily resighted than others, with 
repeated large resighting counts. Both individual behaviour, the early loss of the tag 
from one flipper and tag readability could contribute to this. We will therefore assume 
that some proportion of the population (to be estimated) is highly resightable. Again 
the low-resightability animals will have lower mean observation counts than those of 
high resightability and these will be estimated. 
 
These assumptions result in mixtures of negative binomial distributions that we hope 
will be able to fit these highly dispersed data. 
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3. Data 
Let I¸ a, i, and y denote tag number identity, age, behaviour category and season. The 
data will be arranged in the following format: 
 

1. The number of tagged cows, N. 
 

2. A set of N blocks of data, one for each tagged cow. The first row in each 
block contains: tag number I, tag season yT, the last resight season, yL and the 
observed season of death, yD. For cows where there have been no observations 
after 1999, yL is null. yD will also frequently be null because few animals are 
observed to have died either during the breeding season or in a fishery. yL is 
required because in the seasons following yL the possibilities of both death and 
survival without sighting must be included in the likelihood formulae. If 
yL ≥ 2000, this is followed by yL – 2000 + 1 rows of observations, one for each 
season from 2000 to yL. Each row has four columns, one for each behaviour 
grouping. The first behaviour grouping refers to the observations, BIRTH, 
DEADPUP, PREGNANT, and STILLBIRTH. Mostly these behaviours are 
made once per season and indicate definite breeding. If at least one such 
behaviour is observed, the column will contain a one and otherwise a zero. 
The second grouping refers to only the behaviour NURSE, which indicates 
that breeding is highly probable and the column contains the number of such 
observations. The third grouping refers to the behaviours CALL and 
WITHPUP, which indicate that breeding is probable and the column contains 
the combined number of such observations. The fourth grouping refers to the 
behaviours, DEAD, X (no relevant behaviour), XSUCKLING (suckling from 
a cow) and YNURSE (nursing a yearling), which do not indicate breeding but 
do not necessarily exclude it. The column contains the combined number of 
such observations (in reality YNURSE does exclude breeding but the 
frequency of this behaviour is so low that this fact has been ignored).  

 
For a given tag number in season y, the cow is of age y – yT + 1 and the vector of 
behavioural observations is denoted by yx

%
= (xy1, xy2, xy3, xy4). 

 

4. Estimable parameters 
The estimable parameters which determine the likelihoods of the behavioural 
observations are given here. Bounds indicate anticipated values. 
 
We define pupping rate as a smooth, domed function of age that gives the probability 

that a high-fecundity cow will bear a pup in a given season. The function is 
determined by a vector of parameters, β

%
, where β1 is the maximum value of the 

function, 0.4 < β1 < 0.95, β2 is the age at which the maximum is achieved, 
8 < β2 < 14, β3 and β4 are the ages at which the left and right-hand limbs of the 
function fall to half the maximum, 4 < β3 < 8 and β4 > 14, 

we define mortality as a smooth, U-shaped function of age that gives the probability 
that a cow will die in the year after achieving a given age, where μ1 is the 
minimum function value (mortality rate), 0 < μ1 < 0.3, μ2 is the age at which the 
minimum is achieved, 0 < μ2 < 8, μ3 is the function value at age 0, 0 < μ3 < 0.8, 
and μ4 is the function value at age 20, 0 < μ4 < 0.8, 

let φ be the probability that a given cow is of low fecundity, 0.2 < φ < 0.8, 
let ρ be the ratio of pupping rates of low-fecundity cows to that of high fecundity 

cows, 0.1 < ρ < 0.5, 
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let ψ be the probability that a given cow is of low resightability, 0.2 < ψ < 0.8, 
let τ be the ratio of expected numbers of sightings of low-resightability, breeding cows 

to that of high resightability breeding cows, 0.2 < τ < 0.8, 
let π

%
 be the vector of length 4 where π1 is the probability of making a “Breeder” 
observation and π2, π3 and π4 are the expected numbers of sightings of “Probable 
breeder”, “Possible breeder” and “Unknown” behaviour groupings for a high 
resightability cow in a season that it breeds,  

let π ′
%

 be the equivalent to π
%

 for a high resightability cow in a season that it does not 
breed. 1π ′  is fixed at 0 because a “Breeder” observation is impossible for a cow 
that it does not breed. It is not estimated but is retained for consistency with π , 

%let θ
%

 be the vector of length 8 of the effective resighting effort for the seasons 2000 –
 2007, where θ2000 is set at one and the other values are multipliers, 

let V be the proportionality constant that multiplies the numbers of expected 
behavioural observations to give the variance under the negative binomial 
model. 

 
 

5. Pupping rate and natural mortality functions 
The pupping rate function expresses the probability that a cow of a given age will bear 
a pup in a given season, and therefore includes the process of maturity. We therefore 
expect it to have a rising left hand limb, to reach a maximum between 8 and 14 years 
and then to decline gradually with age. This is the empirical shape found by Chilvers 
(2006) and Gilbert (2007). Gilbert (2007) and Figure 4 suggest that some cows exhibit 
high fecundity and breed in most seasons following maturity, whereas others only 
breed occasionally. We therefore divide the population into high- and low-fecundity 
groups. The function we define depends on parameter vector β

%
 and refers to the high-

fecundity group, 
2
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The function has a maximum value of β1 at a = β2, takes the value 0.5β1 at a = β3 on 
the left and at a = β4 on the right. 
 
If the high- and low-fecundity animal hypothesis is supported by the data then an 
average pupping rate for the population can be obtained by taking a weighted average 
of the respective pupping rates. The weightings are the estimated proportions in each 
group, 

(1 ) b( | ) b( | )a aφ β φρ β− +
% %Estimation of this function is essentially the goal of the project. However other 

functions must be estimated to achieve this. 

 

 
We require a mortality rate for each age class to determine how many cows that were 
not resighted in 2007 were still alive in each prior season that they were not resighted. 
We will define mortality as the probability that a cow dies between 1 December and 
30 November. Mortality is expected to follow an asymmetric U-shape, typical of 
natural mortality in vertebrates, with high mortality for the youngest animals, 
declining steeply to a minimum and then increasing gradually. Mortality here includes 
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incidental bycatches in fisheries (largely squid trawling) but also tag loss and total loss 
of tag readability. These other processes could potentially be separately estimated but 
are outside the scope of this project and are not essential to it. Because these other 
rates are relatively small and the preliminary estimate of mortality was U-shaped 
(Gilbert 2007), we assume that all these processes can be accommodated by the 
following function. It depends on parameter vector μ

%
, 
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%  

The function has a minimum value of μ1 at age a = μ2, takes the value μ3 at a = 0 and 
μ4 at a = 20. 
 

6. Likelihoods 
The method of maximum likelihood obtains parameter estimates by finding the set of 
values that make the whole set of observations the most likely. The likelihood function 
must be expressed algebraically to achieve this. In simple terms, the likelihood 
function is the product of the probabilities of each of the separate observations. This 
can be built up from its constituent parts. We first use the Poisson distribution, which 
is the simplest way of modelling counts. For the “Breeder” category, with values one 
or zero, the likelihood is either π1 or (1 – π1). Given that a cow is alive at the start of 
season y and its fecundity, resightability and breeding status is known, the likelihood 
of the observation vector, yx

%
 depends on the parameter vector, π

%
, and the effective 

resighting effort, θy , 
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For a cow that does not breed in season y, xy1 = 1 is impossible and results in 
f( | , ) 0y yx π θ′ =
% %

. The preliminary analyses suggest that the behaviour counts are 
over-dispersed relative to the Poisson distribution. The negative binomial distribution 
can account for over-dispersion using a parameter, Kyi, which depends on the 
parameter V. Given that a cow is alive at the start of season y, the likelihood of the 
observation vector, yx

%
 depends on the parameter vector, π

%
, and the effective 

resighting effort, θy , 
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As before, for a cow that does not breed in season y, xy1 = 1 results in 
f( | , , ) 0y yx Vπ θ′ =
% %

. The over-dispersion parameter of category i counts in season y, 
Kyi is a function of V, 

,          1
1

y i
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V
θ π

= >
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The variance 2
yiσ  is given by,  

2
yi y iVσ θ π=  

The over-dispersion of the behavioural observations is a constant multiple of the 
mean. The data will first be fitted using the Poisson distribution, where effectively 
V = 1, then with the negative binomial, and then with the negative binomial with 
different over-dispersion multipliers for different behaviour groupings, until 
satisfactory diagnostics are obtained. 
 
We obtain the unconditional likelihood by combining the likelihoods of high- and 
low-fecundity cows, in proportions (1 - φ) and φ, with the low-fecundity pupping rates 
adjusted by the factor, ρ. We also combine the likelihoods of high- and low-
resightability cows in proportions (1 - ψ) and ψ, with the low-resightability expected 
counts adjusted by the factor, τ. Hence, given that a cow is alive at the start of season 
y, the likelihood of the observation vector, yx

%
 depends on the parameters, π

%
, π ′
%

, θy , 

φ , ρ , ψ , τ ,β
%

 and V, 
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The effect of high and low resightability is assumed to be exhibited only in the 
seasons an animal breeds, but this assumption could be reversed if the data do not 
support it. In what follows the notation is used to avoid repeatedly 
specifying the parameters.  

g( | ...)yx
%

 
The total likelihood is obtained by multiplying together the likelihood from each 
season’s observations. For a cow that was alive in 2000 but for which yT < 2000, it is 
necessary to calculate the likelihood that it has survived to year 1999 using the 
mortality function, 

T

1999

1999 T
1

1-m( - -1| )
y y

L y y μ
= +

⎡ ⎤= ⎣ ⎦∏
%

 

Behavioural observations are only used from 2000 onwards. The likelihood of 
observations up to season yL, if yL ≥ 2000, must include the probabilities of survival, 

( )
L
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If yD ≤ 2007, i.e. yD is known, then the likelihood of observations up to 2007 equals 
the likelihood up to season yD, 

( )
D
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If yD ≤ 2007, i.e. yD is known, then the likelihood of observations up to 2007 equals 
the likelihood up to season yD, 

( )
D
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If yD is unknown and yL  2000, i.e. there are no behavioural observations 2000 –
 2007, it is necessary to sum all the alternative seasons in which mortality may have 
occurred, i.e. y

≥/

T to 2007, 
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where 0 y
%

denotes a behavioural observation vector of zeros in season y. If yD is 
unknown and yL ≥ 2000, 
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The last factor is omitted if yL = 2007. Otherwise it includes the possibilities that the 
cow is dead and that it survives but is not observed in each season from yL + 1 to 2007. 
In the above it is assumed that yT < 2000. If yT ≥ 2000, yD is unknown and yL ≥ 2000, 
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The other alternatives expressions for L2007 when yT ≥ 2000 are obtained similarly. 
 
Estimation is achieved by summing the negative logarithms of the likelihoods of the 
observations over tag numbers, I, 

( )2007ln I

I

LΛ = −∑  

and minimising Λ with respect to the 28 estimable parameters. Modifications to the 
model will be made successively until satisfactory diagnostics are achieved. 
 
We propose to carry out this minimisation using AD Model Builder© (Otter Research 
Ltd, Nanaimo, Canada), a powerful minimisation tool. There is some uncertainty as to 
whether the expression for g( | , , , , , , , , )y yx Vπ π θ φ ρ ψ τ β′

% % % %
, which involves a mixture 

of six distributions will allow parameter estimation. Good starting values for the 
parameters may be necessary. The preliminary report (Gilbert 2007) can provide some 
of these. If estimation fails, it may be necessary to drop the high- and low-
resightability categories to reduce the mixture to four distributions. 
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7. Discussion 
A feature of the method discussed above, in which likelihoods are defined as mixtures 
of statistical distributions, is that individual animals are not identified as being of high- 
or low-fecundity or as being of high- or low-resightability. These characteristics are 
expressed only as probabilities. Similarly, for animals not observed dead and not seen 
in 2007 we only estimate a probability that they are alive. Nor are the breeders and the 
non-breeders fully identified each season. The only identified breeders are those for 
which a “Breeder” observation has been made. These uncertainties are in fact the 
virtue of this method. The observations of some animals in some seasons would not 
allow their certain classification as breeders or non-breeders, and fecundity, 
resightability and death will generally be uncertain. All animals must nevertheless be 
accounted for and the method described does this by using probabilities. Because it is 
of interest, we will however calculate odds ratios as an indication of the probable 
categories the animals fall into. For each individual we will calculate its high-
fecundity odds ratio i.e. the likelihood that it is of high fecundity over the likelihood 
that it is of low fecundity. Similarly we will calculate its high-resightability odds ratio. 
For each year we will also calculate the odds ratio that the cow was alive and bore a 
pup. Thus we can compare the results from the model with the criterion-based 
approach to identifying breeders that has been used previously by Chilvers (2006) and 
Gilbert (2007). In the criterion-based approach, observations that indicate probable 
breeding are used to identify breeders, but there is an unavoidable level of 
arbitrariness in classifying some animals. The model results may help identify 
strengths and weaknesses in the criterion-based method and may allow the definition 
of a better criterion for year-to-year usage. 
 
In developing the model the primary tool we will use for determining whether a 
modification should be included is the AIC (Akaike Information Criterion). The 
following modifications will be considered. The 1998 cohort, which suffered high pup 
mortality in an epizootic, showed lower fecundity as adults (Gilbert 2007). A 
fecundity parameter for this cohort would probably significantly improve the model 
fit. Therefore cohort-specific and annual fecundity factors will be tested for inclusion. 
Likewise cohort-specific and annual mortality factors will be tested. Variation of the 
negative binomial variance multiplier, V, amongst observation types will also be 
tested. We will test whether there is evidence for different pupping rate functions and 
different mortality functions for high- and low-fecundity cows. If the high- and low-
resightability hypothesis is supported we will test whether it applies to cows both in 
the seasons that they breed and in the non-breeding seasons. As with all model 
development, the results will depend on whether a model can be found that fits the 
data with satisfactory diagnostics. 
 
The model we have described will provide parameter estimates for a smooth, domed 
function giving the pupping rate at age for female New Zealand sea lions that breed at 
Enderby Island. It will, most likely, be derived as a weighted average of the pupping 
rate functions for high- and low-fecundity animals. The weightings will be the 
estimated proportions in each group. We will test whether the pupping rate function 
for low-fecundity females is simply a scaled version of that for high-fecundity females 
or whether it has a different shape. Our hope is that as well as estimating pupping rate 
the model will improve our understanding of the New Zealand sea lion population. 
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Figure 1. Frequency histogram of NURSE observations per season for tagged cows known 
to be alive based on Enderby Island observations after 1999. Only animals of ages 
8 – 14 years are included. The line is fitted assuming a Poisson distribution after 
censoring the zero counts. 
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Figure 2. Frequency histogram of WITHPUP observations per season for tagged cows 
known to be alive based on Enderby Island observations after 1999. Only animals 
of ages 8 – 14 years are included. The line is fitted assuming a Poisson 
distribution after censoring the zero counts. 
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Figure 3. Frequency histogram of X observations (no behaviour relevant to breeding) per 
season for tagged cows known to be alive based on Enderby Island observations 
after 1999. Only animals of ages 8 – 14 years are included. The line is fitted 
assuming a Poisson distribution. 
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Figure 4. Pupping rate by age for tagged cows known to be alive based on Enderby Island 
observations after 1999. Figure shows mean for all cows, for cows that bore a pup 
in the previous season and for those that did not. 
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