## Further analyses of New Zealand sea lion tag-resighting data

Dave Gilbert for SeaFIC May 2010

## Levels of analysis

| Level                       | Example                                  | Description                                 | Properties                                                                        |
|-----------------------------|------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------|
| 1. Simple                   | This work                                | Each process treated alone                  | Easy to examine hypotheses; estimates may be biased                               |
| 2. Tag-<br>resight<br>model | MacKenzie<br>(2010)<br>Gilbert<br>(2008) | Processes affecting tag- resight integrated | Better than 1; estimates may be slightly biased; must include the right processes |
| 3. Full population model    | Breen et al.                             | All processes integrated                    | Preferred; complex & slow; must include the right processes                       |

Aim of simple analyses is to discover the processes that must be included in 2 and 3.

#### Re-sighting observations

#### 1993 cohort

| Year | Breeders<br>seen | Non-<br>breeders<br>seen | Non-breeders<br>seen only in<br>later years | Total<br>known<br>alive |
|------|------------------|--------------------------|---------------------------------------------|-------------------------|
| 2000 | 44               | 18                       | 17                                          | 79                      |
| 2001 | 43               | 10                       | 18                                          | 71                      |
| 2002 | 37               | 16                       | 17                                          | 70                      |
| 2003 | 38               | 13                       | 13                                          | 64                      |
| 2004 | 39               | 12                       | 8                                           | 59                      |
| 2005 | 21               | 13                       | 15                                          | 49                      |
| 2006 | 14               | 14                       | 11                                          | 39                      |
| 2007 | 12               | 8                        | 11                                          | 31                      |
| 2008 | 16               | 6                        | 4                                           | 26                      |
| 2009 | 6                | 6                        | 0                                           | 12                      |

- •Only 50% of nonbreeders are seen each year
- •Non-breeders seen only in later years is 0 in 2009 (last year of data)
- •We must adjust 2008 & 2009 to avoid bias, but this involves some uncertainty

#### **Animals only seen later**

#### Non-breeders only seen later by year



- •Approx. 50% of adult nonbreeders only seen later
- Higher for younger animals
- Very variable
- •To avoid bias I will adjust (conservatively):

29% for 2009 adults

33% for 2009 3-8-yr-olds

9% for 2008 adults

13% for 2008 3-8-yr-olds

## Simple calculations

Pupping rate = 
$$\frac{Breeders}{Total}$$
Survival = 
$$\frac{Next \ year's \ total}{Total}$$

#### **Survival**

#### Survival by year



- Domed curve
- •Darryl's mean for 4-14 yrs will be too low for 4-10 yrs and too high for 11-14 yrs
- •2008 & 2009 have been adjusted

#### More on survival

#### Survival by year



- •Because juveniles are seen infrequently 0-3 yrs survival may be attributed to wrong ages
- •Survival may reach only 0.95 and year survival may be correspondingly higher
- No obvious good or bad years
- •No evidence of Darryl's low 2008 survival

## **Pupping rate**

#### Pupping rate by cohort



- Domed curve
- •Darryl's mean for 4-14 yrs will be too low for 4-7 yrs and too high for 8-14 yrs
- •2008 & 2009 points have been adjusted (from black points)

## Pupping rate by cohort

#### **Pupping rate by cohort**



- •1998 and 1999 cohorts have HALF the fertility of normal cohorts
- •1993 cohort has above average fertility

#### Pupping rate by year

#### Pupping rate by year



- •2000 & 2001 are good pupping years (Darryl's result)
- •2005 and 2006 are possibly poor years (Darryl's result) but infertile 1998 & 1999 cohorts contribute

### Pupping rate by breeder status

#### Pupping rate by previous breeder status



•Breeders have a higher pupping rate next year than non-breeders

## Pupping rate by observations during mating period

Pupping rate by previous observations 18 Dec - 15 Jan



- •Observation frequency during mating period is a better predictor of pupping rate than breeder status
- •4-yr-olds seen at least 4 times in previous year have 40% pupping rate
- •4-yr-olds never seen in previous year have 1% pupping rate

# Number of observations during mating period

Mean observation frequency by cohort previous 18 Dec - 15 Jan



- •1998 & 1999 cows don't put out
- •We can therefore exclude failure to implant a fertilised ovum and spontaneous abortion as reasons for low pupping rates for the 1998 & 1999 cohorts

#### **Identifying breeders**

|                                             | Birth/<br>dead<br>pup | Nurse | Call | With pup + 2 obs | With pup + 0 or 1 obs | Nil  | Total |
|---------------------------------------------|-----------------------|-------|------|------------------|-----------------------|------|-------|
| $AII \ge 4 yrs$                             | 293                   | 878   | 20   | 109              | 89                    | 1571 | 2690  |
| Certain breeders - single birth obs omitted | 14                    | 249   | 5    | 13               | 1                     | 11   | 293   |
| Breeders - single birth /nurse obs omitted  |                       | 859   | 25   | 147              | 13                    | 127  | 1171  |

- •My criterion (pinks) is a birth, nurse, call or with pup observation. It gives 47% breeders. More liberal than Louise's.
- •Pink rows are observations of definite breeders if a single 'breeder observation' has been not been made.

#### **Errors in identifying breeders**

- •If we had failed to make a single birth/dead pup observation we would have classified 11/293 (4%) of these breeders as non-breeders
- •If we had failed to make a single birth/dead pup/nurse observation we would have classified 127/1171 (11%) of these breeders as non-breeders
- •There are 198/2690 (7%) of all cows  $\geq$  4 yrs classified as breeders by 'with pup' observations alone. Some will be false positives
- •False negatives probably outweigh false positives by 1-5% of TOTAL COWS, i.e. we are under-estimating pupping rates but only a little

#### Tag loss probability

branded cows with 2 tags



- Total probability of losing left tag (whole circle) is 0.119 /yr
- •If tags were independent, lose both probability would be 0.014
- Darryl discovered this non-independence, which affects survival estimates (his numbers differ slightly)

## Tag loss probability branded cows with 1 tag left

Lose left only + lose both ?=? lose left when right already gone

## Variability in tag loss probability

|                  |                                   | Lose left of 2 | Lose<br>both | Lose left<br>(right gone) |
|------------------|-----------------------------------|----------------|--------------|---------------------------|
| Branded          | All                               | 0.067          | 0.052        | 0.119 ✓                   |
|                  | 2000 cohort ≤ 2 y                 | 0.032†         | 0†           | 0.016† <b>×</b>           |
|                  | 2000 cohort ≥ 3 y                 | 0.058†         | 0.047†       | 0.196 <b>×</b>            |
| Branded retagged | 1987-93 cohorts up to 2002        | 0.119          | 0.095†       | 0.094† <b>×</b>           |
|                  | 1987-93 cohorts from 2003 onwards | 0.024†         | 0.024†       | 0.074† <b>×</b>           |
| Non-<br>branded  | All                               | 0.020          |              |                           |
|                  | Non-retagged ≤ 2 y                | 0.009          |              |                           |
|                  | Non-retagged 3-7 y                | 0.026          |              |                           |
|                  | Non-retagged ≥ 8 y                | 0.036†         |              |                           |

<sup>†</sup> fewer than 10 losses - implies low precision

<sup>×</sup> probability of loss from 2 not consistent with loss of last tag

#### Tag loss

- Tag loss is highly variable
- •Tag loss in first 3 years after retagging is at least double that of non-retagged cows. This has little effect here but suggests retagging should be avoided if possible
- Tag loss appears to increase with age or perhaps with age of tag
- Losing both tags in same year is almost as probable as losing only the left tag

## Correcting survival for tag loss effect

- •Branded cows no correction (Darryl's model is right). Therefore no adjustment above age 9 y.
- •Retagged cows (except branded) must have large upwards adjustment in first 3 years (~10%). Not many cases.
- •All other data (0-8 y) need small upwards adjustment perhaps increasing with age of tag (0.5-2%). (Darryl's adjustment may be too large here)

#### **Conclusions**

- Survival and pupping rate are domed functions of age
- No exceptional survival years
- •1998 & 1999 cohorts have very low pupping rate because they don't attend the rookery
- •2000 & 2001 are good pupping years and 2005 & 2006 are poor
- Pupping rates are probably 1-5% more than estimated due to a few breeders not being identified
- •Tag loss adjustment to survival 0.5-2% for cows 0-8 y
- •1998 & 1999 cohorts only partly explain recent low pup counts