

# New Zealand sea lion pupping rate

Project: POP2006

#### Dave Gilbert Louise Chilvers

**Presentation 19 September 2008** 



# Goal: to estimate proportion of cows that breed as a function of age

#### **Definition of breeder**

Cow that gives birth, including when the pup dies or is stillborn

#### **Identification of breeders**

Codify behaviour comment field and use a criterion or fit a mixture of breeder and nonbreeder distributions to frequencies



## Main behaviour frequencies

| SEASON | BIRTH | CALLING | DEAD | NURSING | WITH<br>PUP | NOTHING |
|--------|-------|---------|------|---------|-------------|---------|
| 2000   | 15    | 12      | 4    | 250     | 264         | 1132    |
| 2001   | 17    | 16      | 12   | 245     | 296         | 1276    |
| 2002   | 22    | 10      | 28   | 237     | 344         | 2121    |
| 2003   | 3     | 34      | 3    | 393     | 612         | 2186    |
| 2004   | 31    | 34      | 1    | 509     | 617         | 2510    |
| 2005   | 35    | 1       | 2    | 127     | 191         | 2063    |
| 2006   | 22    | 11      | -    | 299     | 278         | 1974    |
| 2007   | 29    | 13      | -    | 473     | 351         | 2129    |



# Use of behaviour comment field

#### **Behaviour was codified into:**

Birth observations: BIRTH, STILLBIRTH, DEADPUP

Breeder observations: NURSING, WITHPUP, CALLING

Nothing: NURSINGYEARLING, SUCKLINGFROMCOW, DEAD, NOTHING, PREGNANT

#### For each cow we know:

Season it was tagged whether tagged or branded



# How do we distinguish exactly which cows pupped and which were alive but didn't?

- There are a few definite breeders
- Most breeders could be identified if observed for long enough
- 1–3-year-olds are definite nonbreeders
- 37% of observations are breeder observations
- Occasionally non-breeders
  produce breeder observations



### **Probable breeder observations**





# Two methods to estimating pupping rate

- Specify a criterion that categorises each cow each season as a breeder or nonbreeder (e.g. a birth observation or at least 2 breeder observations)
- 2. Estimate probability density functions to explain observation frequencies that depend on whether a cow breeds. Estimate the proportion of breeders and non-breeders in the mixture



#### **Breeder observations proportions**



Observation frequencies (branded; age >= 4 years)



# Error caused by criterion method

Because the probability of getting a breeder observation each time a breeding cow is observed is only 0.37, some breeders will not be identified

E.g. if a breeder is seen 4 times the probability of getting zero breeder observations is

0.634=0.16

These observations will be indistinguishable from those of a non-breeder seen 4 times and the criterion method will wrongly identify it as a non-breeder



### Method 2 Scenario mixtures

Example scenario out of 256:

2000 breed

2001 breed

2002 breed

2003 non-breed

2004 non-breed

2005 non-breed

2006 breed

2007 non-breed

Need to calculate the likelihood of the actual observations under each scenario, multiply it by the likelihood of that scenario and add them



## Method 2 Another scenario

Another scenario :

2000 breed

2001 non-breed

2002 breed

2003 non-breed

2004 breed

2005 non-breed

2006 breed

2007 non-breed

The likelihood of a scenario depends on age, branded/tagged and the sequence, i.e. this one is less likely than the previous because of the serial correlation







# Pupping rate conditional on last year



13

Age



### **Died or not observed?**

- Need to account for non-breeders that are alive but not sighted
- Can be done easily for individuals for the years before the last sighting
- If last sighting was before 2007 the cow may be dead or alive but not sighted
- We therefore estimate mortality parameters and treat the unseen cows as a mixture of dead, nonobserved non-breeders and a very few non-observed breeders



# Mortality and nonobservability mixture

Cow tagged year  $y_t$ 





# **Pupping rate**

#### Estimated breeding probability





## Survival and tag retention



Age

17



# Estimated observation proportions

| Group                       | Total<br>obs = 0 | Breeder<br>obs = 0 | Breeder<br>obs = 1 | Breeder<br>obs ≥ 2 |
|-----------------------------|------------------|--------------------|--------------------|--------------------|
|                             | Percent          | Percer             | nt of observ       | /ed cows           |
| Branded<br>breeders         | 0                | 2.3                | 4.9                | 92.8               |
| Tagged<br>breeders          | 1.8              | 10.3               | 15.1               | 74.6               |
| Branded<br>non-<br>breeders | 50.4             | 99.2               | 0.5                | 0.3                |
| Tagged<br>non-<br>breeders  | 70.1             | 99.3               | 0.4                | 0.3                |



### **Total observation distributions**

#### Estimated total observation density







### **Breeder observation frequencies**

Breeder observation frequencies (>3 years) Beta-binomial model





### **Total observations as mixtures**



22



# Some parameter values

| Parameter                           | Est   |
|-------------------------------------|-------|
| Max pupping rate (average)          | 0.61  |
| Max pupping rate (prev breeder)     | 0.85  |
| Max pupping rate (prev non-breeder) | 0.26  |
| Age max pupping (y)                 | 13    |
| Prob of a breeder obs (breeder)     | 0.37  |
| Prob of a breeder obs (non-breeder) | 0.001 |
| Mean total obs/season (breeder)     | 11.7  |
| Mean total obs (branded breeder)    | 22.6  |
| Mean total obs (3 y, non-breeder)   | 2.1   |
| Mean total obs (20 y, non-breeder)  | 1.2   |



# More parameter values

| Parameter                                      | Est  |
|------------------------------------------------|------|
| Pupping rate reaches half max (y)              | 7    |
| Pupping rate falls to half max (y)             | 17   |
| Max survival & tag retention                   | 0.99 |
| Age at max survival (y)                        | 2    |
| Mean 1 <sup>st</sup> year survival (excl 1987) | 0.54 |
| Survival at age 20 y                           | 0.55 |
| Max observability (2003)                       | 1.20 |
| Min observability (2000)                       | 0.49 |
| Neg-binom overdispersion (breeders)            | 6.4  |
| Neg-binom overdispersion (non-                 |      |
| breeders)                                      | 13.7 |



## Conclusions

- Necessary to estimate breeders with no breeder observations by using a mixture model (12% tagged breeders not identified)
- High breeding serial correlation (breeders 3 times as likely to breed following year)
- Maximum population pupping rate is 61% at age 13 y
- Possibly 20% of cows do not return to rookery each year (not modelled)
- First year survival varies a lot (37-73%)
- Observations over-dispersed (excessive zeros and ones)



## Conclusions

#### Estimated breeding probability

