Estimation of Demographic Parameters for New Zealand Sea Lions Breeding on the Auckland Islands

POP2007/01 Obj 3: 1997/98 – 2009/10

October 2010

Darryl MacKenzie

- 2 key demographic processes
- Can be estimated from tag-resight data using mark-recapture methods
- Previous report highlighted importance of accounting for tag-loss
 - Artificially inflates mortality rates
- Sightability may be different for breeders/non-breeders, branded animals, number of flipper tags

- 4 components to model tag-resight data
 - Number of flipper tags each year
 - Survival from one year to next
 - Whether female breeds in a year
 - Number of sightings in a year

 Number of flipper tags in year *t* is multinomial random variable with 1 draw and category probabilities (π's) that depends on number of tags in previous year (allows for non-independent tag loss)

Number of tags in year t

 Given female is alive, it's age and breeding status in year *t*-1, whether it is alive in year *t* is a Bernoulli random variable where probability of success (survival) is S_{age,t-1,bred}

 Given female is alive in year *t*, it's age and breeding status in year *t*-1, whether it breeds in year *t* is a Bernoulli random variable where probability of success (breeding) is B_{age,t,bred}

- 3 age-classes used for survival/reproduction: 0-3, 4-14, 15+
- OR, constant for 0-3, and logit-linear for age 4+
- Survival and breeding probabilities = 0 for "breeders" in 0-3 age class

$$y_{a,t,b} = \mu_{a,b} + \varepsilon_{t,b}, \quad \varepsilon_{t,b} \square N(0,\sigma_b^2)$$
$$\theta_{a,t,b} = \frac{e^{y_{a,t,b}}}{1 + e^{y_{a,t,b}}}$$

 Annual variation depends upon previous breeding status

- Given female is alive, it's breeding status, presence of a brand, PIT tag and number of tags in year *t*, the number of times it's sighted during a field season is a zeroinflated binomial random variable with a daily resight probability p_{t,bred,brand,tags}
- 3 models: no inflation, time constant inflation, time varying inflation

- Branded animals have the same resight probability regardless of number of flipper tags.
- Animals with no flipper tags can only be resighted if they are chipped or branded.
- PIT tags have no effect on the resight probability if the unbranded animal has 1 or more flipper tags.
- There is a consistent odds ratio (δ) between resighting animals with 1 and 2 flipper tags.
- Resight probabilities are different for breeding and nonbreeding animals.
- Resight probabilities vary annually.

- *p*_{*t,bred,brand*} applies to all females with brand
- *p*_{*t,bred,chip*} applies to unbranded females with no flipper tags
- *p*_{*t,bred,T1} applies to unbranded females* with one flipper tags</sub>
- $p_{t,bred,T2}$ -
- applies to unbranded females
 with two flipper tags

- Posterior distributions for parameters can be approximated with WinBUGS by defining a model in terms of the 4 random variables
- Some outcomes are actually latent (unknown) random variables, but their 'true' value can be imputed by MCMC
- Equivalent to a multi-state mark-recapture model

- 2 chains of 25,000 iterations
- First 5,000 iterations discarded as burn-in
- Prior distributions:
 - µ's ~ N(0,3.78²)
 - σ's ~ U(0,10)
 - Other probabilities $\sim U(0,1)$
 - $\pi_{X,2} \sim \text{Dirichlet}(1,1,1)$
 - In(δ) ~ N(0,10²)
- Chains demonstrated convergence and good mixing

- Model deviance can be calculated and compared for each model
- Same interpretation as for maximumlikelihood methods (e.g., GLM), but has a distribution not single value
- Comparison of distributions a reasonable approach to determine relative fit of the models

- Fit of model to the data can be determined using Bayesian p-values with deviance as test statistic
- For each interaction in MCMC procedure, a simulated data set is created using current parameter values, and the deviance value calculated
- Frequency of simulated deviance values > observed deviance values provides a p-value for model fit

Survival and Reproduction: Data

- 1990-2005 tagging cohorts
- Resights from 1997/8-2009/10 in main field season at Enderby Island
- Only considered confirmed breeders at this stage (status = 3)

Survival and Reproduction: Data

- Retagged females dealt with using the Lazarus approach
- Approximately 2300 tagged females included in analysis

Results (stricter defn.)

Model	2.5 th	Median	97.5 th	В. р-
	Percentile		Percentile	value
AC $\Psi_{a,t,b}$	330381	330872	331335	0.21
AC $\Psi_{a,b}$	330700	331100	331500	0.22
AC $\Psi = 1$	340397	340775	341138	0.02
Linear $\Psi_{a,t,b}$	330389	330843	331292	0.23
Linear $\Psi_{a,b}$	330600	331036	331437	0.25
Linear $\psi = 1$	340372	340753	341118	0.03

Results (strict defn.)

Tag loss

Tags at <i>t</i> -1	Tags at <i>t</i>	Probability
1	0	0.11 (0.10, 0.13)
	1	0.89 (0.87, 0.90)
2	0	0.04 (0.03, 0.06)
	1	0.14 (0.13, 0.16)
	2	0.81 (0.80, 0.83)

Non-breeder in t-1 survival

Breeder in t-1 survival

Non-breeder in *t*-1 repro.

Year

Breeder in *t*-1 repro.

Non-breeder in t-1 survival

Breeder in t-1 survival

Year

Survival vs Age

Age

Age

Non-breeder in *t*-1 repro.

Breeder in *t*-1 repro.

Year

Breeding vs Age

Age

Age