Estimation of Demographic Parameters for New Zealand Sea Lions Breeding on the Auckland Islands

POP2007/01 Obj 3 : 1997/98-2009/10

October 2010
Darryl MacKenzie

Survival and Reproduction

- 2 key demographic processes
- Can be estimated from tag-resight data using mark-recapture methods
- Previous report highlighted importance of accounting for tag-loss
- Artificially inflates mortality rates
- Sightability may be different for breeders/non-breeders, branded animals, number of flipper tags

Survival and Reproduction

- 4 components to model tag-resight data
- Number of flipper tags each year
- Survival from one year to next
- Whether female breeds in a year
- Number of sightings in a year

Survival and Reproduction

- Number of flipper tags in year t is multinomial random variable with 1 draw and category probabilities (π 's) that depends on number of tags in previous year (allows for non-independent tag loss)

Number of tags in year t

		0	1	2
Number of tags in year $t-1$	0	1	0	0
	1	$1-\pi_{1,1}$	$\pi_{1,1}$	0
	2	$1-\pi_{1,2}-\pi_{2,2}$	$\pi_{1,2}$	$\pi_{2,2}$

Survival and Reproduction

- Given female is alive, it's age and breeding status in year $t-1$, whether it is alive in year t is a Bernoulli random variable where probability of success (survival) is $S_{\text {age,t-1,bred }}$

Survival and Reproduction

- Given female is alive in year t, it's age and breeding status in year $t-1$, whether it breeds in year t is a Bernoulli random variable where probability of success (breeding) is $B_{\text {age,t,bred }}$

Survival and Reproduction

- 3 age-classes used for survival/reproduction: 0-3, 4-14, 15+
- OR, constant for 0-3, and logit-linear for age 4+
- Survival and breeding probabilities $=0$ for "breeders" in 0-3 age class

Survival and Reproduction

$$
\begin{gathered}
y_{a, t, b}=\mu_{a, b}+\varepsilon_{t, b}, \quad \varepsilon_{t, b} \square N\left(0, \sigma_{b}^{2}\right) \\
\theta_{a, t, b}=\frac{e^{y_{a, t, b}}}{1+e^{y_{a, t, b}}}
\end{gathered}
$$

- Annual variation depends upon previous breeding status

Survival and Reproduction

- Given female is alive, it's breeding status, presence of a brand, PIT tag and number of tags in year t, the number of times it's sighted during a field season is a zeroinflated binomial random variable with a daily resight probability $p_{t, \text { bred,brand,tags }}$
- 3 models: no inflation, time constant inflation, time varying inflation

Survival and Reproduction

- Branded animals have the same resight probability regardless of number of flipper tags.
- Animals with no flipper tags can only be resighted if they are chipped or branded.
- PIT tags have no effect on the resight probability if the unbranded animal has 1 or more flipper tags.
- There is a consistent odds ratio (δ) between resighting animals with 1 and 2 flipper tags.
- Resight probabilities are different for breeding and nonbreeding animals.
- Resight probabilities vary annually.

Survival and Reproduction

$p_{t, \text { bred,brand }}$ - applies to all females with brand
$p_{t, \text { bred,chip }}$ - applies to unbranded females with no flipper tags
$p_{t, \text { bred,T1 }} \quad$ - applies to unbranded females with one flipper tags
$p_{t, \text { bred,T2 }} \quad$ - applies to unbranded females with two flipper tags

Survival and Reproduction

- Posterior distributions for parameters can be approximated with WinBUGS by defining a model in terms of the 4 random variables
- Some outcomes are actually latent (unknown) random variables, but their 'true' value can be imputed by MCMC
- Equivalent to a multi-state mark-recapture model

Survival and Reproduction

- 2 chains of 25,000 iterations
- First 5,000 iterations discarded as burn-in
- Prior distributions:
- μ 's $\sim N\left(0,3.78^{2}\right)$
- σ 's $\sim \mathrm{U}(0,10)$
- Other probabilities $\sim \mathrm{U}(0,1)$
- $\pi_{\mathrm{X}, 2} \sim \operatorname{Dirichlet}(1,1,1)$
- $\ln (\delta) \sim N\left(0,10^{2}\right)$
- Chains demonstrated convergence and good mixing

Survival and Reproduction

- Model deviance can be calculated and compared for each model
- Same interpretation as for maximumlikelihood methods (e.g., GLM), but has a distribution not single value
- Comparison of distributions a reasonable approach to determine relative fit of the models

Survival and Reproduction

- Fit of model to the data can be determined using Bayesian p-values with deviance as test statistic
- For each interaction in MCMC procedure, a simulated data set is created using current parameter values, and the deviance value calculated
- Frequency of simulated deviance values > observed deviance values provides a p-value for model fit

Survival and Reproduction: Data

- 1990-2005 tagging cohorts
- Resights from 1997/8-2009/10 in main field season at Enderby Island
- Only considered confirmed breeders at this stage (status $=3$)

Survival and Reproduction: Data

- Retagged females dealt with using the Lazarus approach
- Approximately 2300 tagged females included in analysis

Results (stricter defn.)

Model	2.5th Percentile	Median	97.5th Percentile	B. p- value
AC $\psi_{a, t, b}$	330381	330872	331335	0.21
AC $\psi_{a, b}$	330700	331100	331500	0.22
AC $\psi=1$	340397	340775	341138	0.02
Linear $\psi_{a, t, b}$	330389	330843	331292	0.23
Linear $\psi_{a, b}$	330600	331036	331437	0.25
Linear $\psi=1$	340372	340753	341118	0.03

Results (strict defn.)

- Tag loss

Tags at $t-1$	Tags at t	Probability
1	0	$0.11(0.10,0.13)$
	1	$0.89(0.87,0.90)$
2	0	$0.04(0.03,0.06)$
	1	$0.14(0.13,0.16)$
	2	$0.81(0.80,0.83)$

Non-breeder in $t-1$ survival

Breeder in $t-1$ survival

Year
Year

Non-breeder in t-1 repro.

Breeder in $t-1$ repro.

Non-breeder in $t-1$ survival

Breeder in $t-1$ survival

Survival vs Age

Non-breeder in t-1 repro.

Breeder in $t-1$ repro.

Breeding vs Age

