Estimation of Demographic Parameters for New Zealand Sea Lions Breeding on the Auckland Islands

POP2007/01 Obj 3

Mach 09 Update

Darryl MacKenzie

- 2 key demographic processes
- Can be estimated from tag-resight data using mark-recapture methods
- Previous report highlighted importance of accounting for tag-loss
 - Artificially inflates mortality rates
- Sightability may be different for breeders/non-breeders, branded animals, number of flipper tags

- 4 components to model tag-resight data
 - Number of flipper tags each year
 - Survival from one year to next
 - Whether female breeds in a year
 - Number of sightings in a year
- Focus of update to asses relative fit of the models and compare different agestructures

 Number of flipper tags in year t is multinomial random variable with 1 draw and category probabilities (π's) that depends on number of tags in previous year

Number of tags in year t

Number of tags in year *t*-1

	0	1	2
0	1	0	0
1	1- π _{1,1}	π _{1,1}	0
2	1- π _{1,2} - π _{2,2}	π _{1,2}	$\pi_{2,2}$

 Analyses conducted with and without accounting for tag-loss to assess it's effect on estimation of demographic parameters

 Given female is alive, it's age and breeding status in year t-1, whether it is alive in year t is a Bernoulli random variable where probability of success (survival) is S_{age,bred}

 Given female is alive in year t, it's age and breeding status in year t-1, whether it breeds in year t is a Bernoulli random variable where probability of success (breeding) is B_{age,bred}

- 3 relationships considered between age and survival/reproduction
 - Single age-class
 - 3 age-classes: 0-3, 4-14, 15+
 - 4 age-classes: 0-3, 4-7, 8-14, 15+

 Survival and breeding probabilities =0 for "breeders" in 0-3 age class

 Given female is alive, it's breeding status, presence of a brand, PIT tag and number of tags in year t, the number of times it's sighted during a field season is a binomial random variable with a daily resight probability p_{t,bred,brand,tags}

- Branded animals have the same resight probability regardless of number of flipper tags.
- Animals with no flipper tags can only be resighted if they are chipped or branded.
- PIT tags have no effect on the resight probability if the unbranded animal has 1 or more flipper tags.
- There is a consistent odds ratio (δ) between resighting animals with 1 and 2 flipper tags.
- Resight probabilities are different for breeding and nonbreeding animals.
- Resight probabilities vary annually.

- $p_{t,bred,brand}$ applies to all females with brand
- p_{t,bred,chip} applies to unbranded females
 with no flipper tags
- $p_{t,bred,T1}$ applies to unbranded females with one flipper tags
- $p_{t,bred,T2}$ applies to unbranded females with two flipper tags

- Posterior distributions for parameters can be approximated with WinBUGS by defining a model in terms of the 4 random variables
- Some outcomes are actually latent (unknown) random variables, but their 'true' value can be imputed by MCMC
- Equivalent to a multi-state mark-recapture model

- 2 chains of 25,000 iterations
- First 5,000 iterations discarded as burn-in
- Prior distributions:
 - Most probabilities ~ U(0,1)
 - π_{X.2} ~ Dirichlet(1,1,1)
 - $ln(\delta) \sim N(0, 10^2)$
- Chains demonstrated convergence and good mixing

- Model deviance can be calculated and compared for each model
- Same interpretation as for maximumlikelihood methods (e.g., GLM), but has a distribution not single value
- Comparison of distributions a reasonable approach to determine relative fit of the models

- Fit of model to the data can be determined using Bayesian p-values with deviance as test statistic
- For each interaction in MCMC procedure, a simulated data set is created using current parameter values, and the deviance value calculated
- Frequency of simulated deviance values >
 observed deviance values provides a p-value for model fit

- Last minute addition: fit fully age-specific model
- Examine for any apparent patterns not accounted for in previous models

Estimands will have low precision

Survival and Reproduction: Data

- 1990-2003 tagging cohorts
- Resights from 1998-2008 in main field season at Enderby Island
- 2 definitions considered for breeder according to assigned status in database
 - Confirmed breeders (status = 3)
 - Probable breeders (status = 3 or 15)

Survival and Reproduction: Data

 Retagged females dealt with using the Lazarus approach

Almost 1700 tagged females included in analysis

Traceplots

 Single age-class results appear suspicious, initial rechecks indicate results are incorrect (suspect results should be similar to when using liberal defn.)

 Summary of posterior distribution for deviance values and Bayesian p-values

	Age Classes in Model		
	Single	3	4
Mean	257719.3	258874.7	258864.0
2.5%ile	257352.9	258570.8	258561.2
97.5%ile	258088.2	259163.7	259160.9
min	256971.5	258268.0	258156.4
max	258529.4	259413.4	259463.4
p-value	0.9999	0.2151	0.2206

- Resight probabilities very similar from different models
- Branded animals

PIT-tagged only animals

1 flipper tag

2 flipper tags

Non-breeder in t-1 survival

Breeder in t-1 survival

• Non-breeder in *t*-1 reproduction

• Breeder in *t*-1 reproduction

Tag loss

 Summary of posterior distribution for deviance values and Bayesian p-values

	Age Classes in Model		
	Single	3	4
Mean	260086.5	259192.2	259196.7
2.5%ile	259784.9	258895.1	258898.4
97.5%ile	260375.2	259485.1	259491.5
min	259444.5	258602.1	258563.4
max	260681.8	259771.8	259840.5
p-value	0.4274	0.2230	0.2322

Non-breeder in t-1 survival

Breeder in t-1 survival

• Non-breeder in *t*-1 reproduction

• Breeder in *t*-1 reproduction

Tag-loss

- Fully age-specific model
- Non breeders in t-1 survival

• Breeders in *t*-1 survival

• Non-breeders in *t*-1 reproduction

• Breeders in *t*-1 reproduction

Discussion Points

- 3- or 4-age class models seem reasonable
 - No evidence of poor model fit
 - Capture main features of fully age-specific model
- Liberal definition of "breeder" has little effect on survival, increases breeding probability by 0.02-0.07
- Difficult to determine which might be more correct

Discussion Points

- Population size estimates should be a key demographic parameter to fisheries/sea lion management
- Dynamic rates provide important information about how populations change, don't provide information on current state of population
- Current state of population likely to be a primary driver of management actions to achieve clearly defined management objectives