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Introduction 
This final report on the estimation of demographic parameters for New Zealand sea lions 

breeding on the Auckland Islands from data collected up to the 2007/8 field season presents 

the final round of analyses following presentation of interim results at Conservation Services 

Programme (CSP) working group meetings on 19 September 2008 and 16 March 2009. Some 

details that were included in earlier reports that are not directly relevant to the final results 

have not been included here, though references have been made to the earlier reports where 

appropriate.  

Survival and Reproduction 

Estimation methods 
The tag-resight data was analysed using mark-recapture methods implemented in the 

software WinBUGS. This allows the simultaneous estimation of survival and breeding rates 

with the ability to easily account for tag-loss. Unaccounted for, tag loss will result in 

estimated survival rates being biased low (i.e., mortality will be overestimated). This was 

illustrated in MacKenzie (2008). 

 

Whether an animal survives between breeding seasons t−1 and t could be considered as a 

Bernoulli random variable (i.e., a coin flip) where the probability of survival is S , which may 

vary by age or breeding status of the animal in year t−1 (eqn 1). Similarly, whether an animal 

breeds in year t could also be regarded as a Bernoulli random variable, with probability of 

breeding equal to B , which may also vary by age or breeding status in the previous year (eqn 

2). The number of flipper tags remaining on an animal in year t, given the number of tags in 

the previous year could be represented as a multinomial random variable with only 1 trial 

(i.e., the outcome from a single roll of a dice), The probability of the number of tags in year t 

is now a vector, T because of the multiple potential outcomes (eqn 3). 

 

( ),, 1 age bredSurvive to year t alive age and breeding status in year t Bernoulli S− ∼  (1) 

 

( ),, 1 age bredBreeds in year t alive in year t age and breeding status in t Bernoulli B− ∼  (2) 
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( ), 1 ,1tagsTags in year t alive in year t number of tags in t multinomial− T∼   (3) 

 

Using WinBUGS, the estimation problem can be defined in terms of the underlying random 

variables which mitigates the need to define the model likelihood explicitly.  

 

Survival and breeding probabilities were allowed to vary in accordance with animal age. 

Three different age structures were considered: constant for all ages (i.e., a single age class), 

3 age classes (0-3, 4-14, 15+) and 4 age classes (0-3, 4-7, 8-14, 15+). These age classes were 

decided upon through discussion with Dr Louise Chilvers (DOC). There are no breeding 

individuals in the 0-3 age class hence these survival and breeding probabilities were set to 0. 

Tag loss probabilities were assumed constant with respect to animal age. Following this 

primary analysis, an exploratory model was also fit to the data where survival and breeding 

probabilities were completely age-specific to investigate whether there might be any apparent 

age structure not captured by the simpler models. Note that survival and breeding 

probabilities depend upon the age of the individual in the previous year (see eqns 1 and 2). 

 

Within a breeding season, attempts are made to resight previously tagged individuals. There 

are a limited number of days of field effort each year, and on any given day individuals may 

or may not be observed. Therefore, the number of times an individual is seen during a 

breeding season could be considered as a binomial random variable with a daily sighting 

probability of p . The sighting probability depends upon whether the animal is currently 

alive, breeding status, age class, number of flipper tags, presence of a brand and PIT tag. It is 

assumed that: 

1. Animals that have no flipper tags can not be resighted unless they are chipped or 

branded. 

2. Whether an unbranded animal is chipped or not has no effect on the resight 

probability if the animal has 1 or more flipper tags. 

3. Branded animals have the same resight probability regardless of number of flipper 

tags. 

4. There is a consistent odds ratio (δ) between resighting animals with 1 and 2 flipper 

tags (eqn 5). 

5. Resight probabilities are different for breeding and non-breeding animals. 

6. Resight probabilities are different for animals aged 0-3 and those 4+. 



 

 3

7. Resight probabilities vary annually. 

 

  , ,

, ,

2 1

1 2 1 1
t bred t bred

t bred t bred

p p

p p
= ×δ

− −
       (5) 

 

With the exception of the resight probability for animals with 2 tags (p2), all other 

probabilities are estimated independently.  

 

Two definitions of ‘breeding’ (see below) are used to compare how that may influence 

results. 

 

Markov chain Monte Carlo methods were used to obtain approximate posterior distributions 

for all parameters. Two chains of 25,000 iterations were run with the first 5,000 iterations of 

each chain being discarded as the burn-in period. Chains were checked for convergence and 

good mixing. Uniform prior distributions were assumed for all probabilities except tag loss 

when an animal had 2 tags in the previous year, in which case a Dirichlet(1,1,1) prior 

distribution was used. The natural log of the odds ratio δ was assigned a normal prior 

distribution with zero mean and SD = 10. For the exploratory analysis of fully age-specific 

demographic rates, only 5,500 iterations were used with the first 500 being discarded as the 

burn-in period. 

Model Fit 
Model fit was assessed using Bayesian p-values (Gelman et al. 2003) with the model 

deviance being used as the test statistic. For each iteration in the MCMC procedure, the 

deviance for the observed data is calculated given the current values of model parameters, 

and compared to the deviance for a set of simulated data that has been generated using those 

current values. The p-value is determined as the fraction of iterations where the generated 

deviance is greater than the observed deviance. Extreme values (close to 0 or 1) may indicate 

the estimating model is not a good fit for the observed data. 

 

Simulated data sets were created based upon the observed data. For each individual, given the 

year, their age and breeding status when they were tagged, the ‘observations’ in the 

subsequent years (whether they survived, bred, number of tags remaining and number of 

resights each season) were simulated based upon the sequence of random variables defined 
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above. This creates a generated set of data for which we know that the model being applied to 

the real data must be reasonable. Therefore, the range of deviance values obtained from the 

simulated data sets indicates what values could be expected if the estimating model is a 

reasonable fit to the real data. 

 

The posterior distribution of the deviance value for the observed data could also be used as a 

relative measure of fit among models, with smaller values indicating a better model. 

However, one cannot use the same guidelines to compare models as when performing a 

maximum-likelihood analysis. The deviance values obtained when using maximum-

likelihood is analogous to the minimum value in the posterior distribution, whereas in a 

Bayesian context one may look at the entire distribution of deviance values to compare 

models. 

 

Data used 
Data was extracted from the Auckland Island sea lion database by Laura Boren (DOC 

contractor) with additional verification by Darryl MacKenzie (Proteus), for females tagged 

between 1990 – 2003 and resighted during the period 1990-2008. As estimation is primarily 

focused on adult females, data from the 2004-2008 cohorts was not requested as very few of 

them would have been breeding adults by 2008 and hence contributed little information to the 

analysis on the associated demographic parameters. Due to the inconsistent field effort prior 

to 1998, data from 1990-1997 was not considered and all analyses are conditional upon the 

first encounter of a female in the period 1998-2008. Pups that did not survive the first 8 

weeks are excluded from the analysis. Only encounters inside of the primary field season on 

Enderby Island were used. 

 

Breeders were defined according to the status allocated to females in the sea lion database. In 

the primary analysis ‘breeders’ were defined by those animals given a status of ‘3’ in that 

year (i.e., 3 = adult female confirmed to have pupped (seen nursing, or giving birth) for that 

breeding season). A more liberal secondary definition was also used with ‘breeders’ being 

defined as those animals given a status of either ‘3’ or ‘15’ in that year (15 = Adult female 

probably pupped – female seen on three or more occasions including at least one sighting  in 

the presence of a pup, but not seen giving birth, or nursing a pup). 
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When an animal was retagged during the period 1998-2008, the new tag number was treated 

as an older animal that had been tagged for the first time, while the old identity was treated as 

a ‘loss on recapture’. This is a standard technique for dealing with retagged animals in mark-

recapture analyses. 

 

Results 

Examples of Convergence 
Due to the large number of parameters, traces of the MCMC chains are not presented here for 

all parameters, though examples are given in Figures 1-3. The traces for all demographic 

parameters where checked for each model. Generally, convergence appears to have been 

reached within the first 1000 iterations, well within the 5000 burn in period. 

Strict Definition of ‘Breeder’ 
Posterior distributions for the resight probabilities were consistent regardless of the age-

structure used to model survival and breeding probabilities, hence only those from the model 

with 4 age-classes are presented here (Figures 4-7). In all cases, the daily probability of 

resighting a tagged breeder (red-shaded) is higher than a tagged non-breeder (grey-shaded). 

Daily resight probabilities for individuals in the 0-3 age group are very low, as are the 

probabilities of resighting tagged individuals by PIT tag. 

 

Deviance values and deviance-based Bayesian p-values for models with the different age-

structures are given in Table 1, and the posterior distributions of the deviance value given in 

Figure 8. There is no indication of model lack of fit based upon these results. The posterior 

distributions of the deviance value for the 3- and 4-age class models essentially overlap 

indicating they could be ranked similarly, and are both smaller than for the single-age class 

model suggesting they are better models. 

 

Figure 9 presents the posterior distributions for survival for non-breeders from each model 

with the different age structures, with a numerical summary given in Table 2.  The equivalent 

results for breeders are given in Figure 10 and Table 3. These results indicate differences in 

survival amongst age groups, although there is little difference between using a 3- or 4-age 

class model. In all cases breeders are estimated to have higher survival than non-breeders. 

  



 

 6

The posterior distribution for breeding in year t by age group for non-breeders in year t−1 is 

given in Figure 11, and for breeders in Figure 12. Numerical summaries are given in Tables 4 

and 5. From the 3- and 4-age class models, the posterior distribution for females aged 0-3 that 

were non-breeders in the previous year is essentially 0, but there has been the rare individual 

that has bred for the first time at age 4. Breeding probabilities for animals that were either 

breeders or non-breeders in the previous year are similar across the other age groups, 

although individuals that bred in the previous year have a higher probability of breeding in 

the current year.  

 

Figure 13 illustrates the posterior distribution for the probability of an individual having no 

tags in year t given either 1 or 2 tags in year t−1, with Table 6 presenting a summary of the 

probabilities for all tag numbers. These results suggest that flipper tags are not lost 

independently as the probability of losing both tags is not approximately the probability of 

losing 1 tag, squared. Furthermore, if tag loss was not accounted for survival would be 

underestimated by approximately 0.09, although the presence of branded and PIT tagged 

animals partially mitigates this. 

 

Liberal Definition of ‘Breeder’ 
Posterior distributions for the resight probabilities when using the liberal definition of breeder 

are essentially identical to when using stricter definition, hence are not presented again. 

 

Deviance values and deviance-based Bayesian p-values for models with the different age-

structures are given in Table 7, and the posterior distributions of the deviance value given in 

Figure 14. There is no strong indication of model lack of fit. The posterior distributions of the 

deviance value would indicate that the 3- and 4-age class models could be ranked similarly, 

and are better than the single-age class model. 

 

Using the more liberal definition of breeder does not appreciable change any of the main 

results observed than when using the stricter definition. The main difference is that the 

posterior distributions for breeding probabilities tend to be slightly higher (Figures 15-19, 

Table 8-12). 
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Exploratory analysis of full age-specific models 
Posterior distributions for survival and breeding probabilities under a fully age-specific 

model are given in Figures 20-23 and Figure 24-27, using the strict and liberal definition of 

breeder respectively. The distributions are characterised by a great deal of uncertainty which 

is due to the relatively small number of sea lions of a particular age each year, hence pooling 

into age classes would seem appropriate as a means of reducing the estimation uncertainty. It 

should be noted that by spreading the data so thinly over so many parameters, other effects 

such as annual variation in the demographic parameters may be influencing results, 

contributing to some of the apparent patterns in the estimates. It should also be noted that 

when sample sizes are very small, the influence of the prior distribution on the results is 

greater, causing the mean of the posterior distribution to be pulled toward 0.5. This may 

contribute to the apparent senescence effect. 

 

While not definitive, in combination with the Bayesian p-values, these figures would suggest 

that the 3- or 4-age class models capture the main features of the population demographics. 

The exception may be for non-breeder survival in the 0-3 age class, where it would appear 

that perhaps survival is only markedly lower for pups of the year, and that 1-3 year olds have 

a similar survival rate to older animals. However there is the possibility for some 

confounding of survival rate estimates because of the very low resighting rates for younger 

animals. Using the current 0-3 age class, it may be appropriate to interpret the estimated 

survival rates as an annualised value for surviving from a pup to a 4-year old. 

  

Discussion 
The age classes used here are biologically reasonable (L Chilvers, pers comm.) and there is 

no evidence of poor model fit. Hence, the results presented here are reasonable. There may be 

some desire to further partition the 0-3 and 15+ age groups, however in both cases there are 

important sample size considerations that may limit the utility of doing so. The resighting 

rates of females in the 0-3 age group is very small, indicating there are very few observations 

of such animals. As such, estimands of age-specific survival in this group may be unreliable. 

For the oldest age group one may expect some form of senescence to occur in either breeding 

or survival probabilities. However, there are very few individuals in this age group so again, 

further partitioning of the age group may led to unreliable estimands as the prior distribution 

will have a greater effect on results.  
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Using the more liberal definition of a “breeder” primarily only has an impact upon the 

breeding probabilities; all other parameters are essentially unchanged. Generally, breeding 

probabilities for the adult age classes increase by between 0.02-0.06, with the exception of 

the oldest age classes with individuals that were breeders in the previous year. It is not 

possible to determine from the available data which definition might be more correct. 

 

Population Size 
Population size was indicated as one of the demographic parameters that would be estimated 

as part of this contract. It was originally suggested that the Gales-Fletcher method be 

revisited for estimating population size, but using values for demographic parameters that 

have been estimated directly from New Zealand sea lion data. Other approaches were also to 

be considered where the existing resight data might be used to estimate population size 

directly. 

 

Using the Gales-Fletcher method (which involves assuming a stable population structure), 

population size is essentially the pup production numbers multiplied by a scalar amount 

(approximately 4.7). Modifying the values of the demographic parameters used, or slight 

changes to the assumed age-structure within the model, will only result in a change in the 

scalar used: population size estimates will still essentially be rescaled pup production 

numbers hence this approach was determined to be an unproductive way forward. 

 

The existing, available data can not be used to directly estimate total population size either as 

tagging (marking) has been primarily of pups. This problem only became apparent once the 

research was begun. The best that could be achieved is that it is possible to estimate the 

number of individuals alive from each tagging cohort that are still alive in each year. Once 

most of the animals alive where born in a year when tagging occurred, by summing across 

tagging cohorts it would be possible to obtain a value that may be close to the true population 

size. Given that tagging has been consistently occurring since the 1997/98 season, it may still 

be another 5 or 6 season before we might be confident that most of the individuals within the 

population where born during this continuous period of tagging. Ongoing estimates of 

population size using this type of approach would also require the ongoing tagging of pups. 
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To obtain a direct estimate of population size would require other data to be collected during 

the field season. Exactly what information should be collected, and how this might be done, 

requires some careful thought and discussions with field personnel. However, one option 

would be to do something similar to what is presently conducted to estimate pup production 

in some areas. For example, count the number of females on a (section of ) beach and mark 

some number of them (e.g., 100 with a temporary mark). A few days later, repeat the survey 

and count the number of females on the beach, and the number that are marked. This data 

would provide the type information required to obtain a direct estimate of population size. 

 

While having reliable estimates of survival and breeding rates is very useful information as 

they provide important insights into how a population may be functioning, they do not 

indicate how well a population may be performing at a particular point in time which is likely 

to be very important information from a management perspective (i.e., management actions 

could be very different if population size is relatively large or small, all else being equal). 

Furthermore, efforts to identify any density dependent effects on survival and/or breeding 

would be aided greatly by having independent estimates of population size. Therefore, it is 

recommended that serious consideration be given to assess whether the collection of 

additional information would be feasible in the upcoming field seasons. 
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Figures 
Figure 1: Example trace plot of breeder survival. 
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Figure 2: Example trace plot of non-breeder survival. 
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Figure 3: Example trace plot of probability of resighting a branded females. 
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Figure 4: Posterior distribution for the daily probability of sighting a branded individual in 

each year by age class. Resight probabilities for which there was no information in the data 

are not indicated. Grey-shaded distributions indicate non-breeders and red-shaded 

distributions breeders. 
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Figure 5: Posterior distribution for the daily probability of sighting a PIT tagged individual 

with no flipper tags in each year by age class. Resight probabilities for which there was no 

information in the data are not indicated. Grey-shaded distributions indicate non-breeders and 

red-shaded distributions breeders. 
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Figure 6: Posterior distribution for the daily probability of sighting an individual with 1 

flipper tag in each year by age class. Resight probabilities for which there was no information 

in the data are not indicated. Grey-shaded distributions indicate non-breeders and red-shaded 

distributions breeders. 
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Figure 7: Posterior distribution for the daily probability of sighting an individual with 2 

flipper tags in each year by age class. Resight probabilities for which there was no 

information in the data are not indicated. Grey-shaded distributions indicate non-breeders and 

red-shaded distributions breeders. 
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Figure 8: Posterior distributions for the deviance value from the single- (light grey line), 3- 

(dark grey line) and 4-age class (black line) models, using the strict definition of breeder. 
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Figure 9: Posterior distribution for probability of survival from year t−1 to t for individuals 

that were non-breeders of a certain age in year t−1, from models with different age structures, 

using the strict definition of breeder. 
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Figure 10: Illustration of posterior distribution for probability of survival from year t−1 to t 

for individuals that were breeders of a certain age in year t−1, from models with different age 

structures, using the strict definition of breeder. 
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Figure 11: Posterior distribution for probability of breeding in year t for individuals that were 

non-breeders of a certain age in year t−1, from models with different age structures, using the 

strict definition of breeder. 
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Figure 12: Posterior distribution for probability of breeding in year t for individuals that were 

breeders of a certain age in year t−1, from models with different age structures, using the 

strict definition of breeder. 
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Figure 13: Posterior distribution for the probability of having no tags in year t given the 

number of tags in year t−1, from the model a) a single age class; b) 3 age classes; and c) 4 

age classes, for survival and breeding probabilities, using the strict definition of breeder. 
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Figure 14: Posterior distributions for the deviance value from the single- (light grey line), 3- 

(dark grey line) and 4-age class (black line) models using the more liberal definition of 

breeder. 
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Figure 15: Posterior distribution for probability of survival from year t−1 to t for individuals 

that were non-breeders of a certain age in year t−1, from models with different age structures 

using the liberal definition of a breeder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 25

Figure 16: Posterior distribution for probability of survival from year t−1 to t for individuals 

that were breeders of a certain age in year t−1, from models with different age structures 

using the liberal definition of a breeder. 
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Figure 17: Posterior distribution for probability of breeding in year t for individuals that were 

non-breeders of a certain age in year t−1, from models with different age structures using the 

liberal definition of a breeder. 
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Figure 18: Posterior distribution for probability of breeding in year t for individuals that were 

breeders of a certain age in year t−1, from models with different age structures using the 

liberal definition of a breeder. 
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Figure 19: Posterior distribution for the probability of having no tags in year t given the 

number of tags in year t−1, from the model a) a single age class; b) 3 age classes; and c) 4 

age classes, for survival and breeding probabilities using the liberal definition of a breeder. 
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Figure 20: Posterior distributions for probability of survival from year t−1 to t for individuals 

that were non-breeders of a certain age in year t−1, from full age-specific model, using the 

strict definition of breeder. 
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Figure 21: Posterior distributions for probability of survival from year t−1 to t for individuals 

that were breeders of a certain age in year t−1, from full age-specific model, using the strict 

definition of breeder. 
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Figure 22: Posterior distributions for probability of breeding in year t for individuals that 

were non-breeders of  certain age in year t−1, from full age-specific model, using the strict 

definition of breeder. 
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Figure 23: Posterior distributions for probability of breeding in year t for individuals that 

were breeders of a certain age in year t−1, from full age-specific model, using the strict 

definition of breeder. 
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Figure 24: Posterior distributions for probability of survival from year t−1 to t for individuals 

that were non-breeders of a certain age in year t−1, from full age-specific model, using the 

liberal definition of breeder. 
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Figure 25: Posterior distributions for probability of survival from year t−1 to t for individuals 

that were breeders of a certain age in year t−1, from full age-specific model, using the liberal 

definition of breeder. 
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Figure 26: Posterior distributions for probability of breeding in year t for individuals that 

were non-breeders of a certain age in year t−1, from full age-specific model, using the liberal 

definition of breeder. 
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Figure 26: Posterior distributions for probability of breeding in year t for individuals that 

were breeders of a certain age in year t−1, from full age-specific model, using the liberal 

definition of breeder. 
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Tables 
Table 1: Summary of the posterior distribution for the deviance values from each model and 

the associated deviance-based Bayesian p-value, using the strict definition of breeder. 

  Age Classes in Model 
  Single 3 4 
Mean 259765.7 258874.7 258864.0 
2.5%ile 259471.4 258570.8 258561.2 
97.5%ile 260042.9 259163.7 259160.9 
min 259162.0 258268.0 258156.4 
max 260358.1 259413.4 259463.4 
p-value 0.5508 0.2151 0.2206 
 

Table 2: Mean and central 95% credible interval from each model for the probability of 

survival from year t−1 to t for individuals that were non-breeders of a certain age in year t−1, 

using the strict definition of breeder. 

Age Classes in Model Age at 
t−1  Single 3 4 

0-3 0.88 (0.86, 0.90) 0.72 (0.70, 0.74) 0.72 (0.70, 0.74) 
4-7 0.88 (0.86, 0.90) 0.88 (0.85, 0.89) 0.88 (0.86, 0.90) 
8-14 0.88 (0.86, 0.90) 0.88 (0.85, 0.89) 0.86 (0.83, 0.90) 
15+ 0.88 (0.86, 0.90) 0.72 (0.59, 0.84) 0.72 (0.59, 0.84) 
 

Table 3: Mean and central 95% credible interval from each model for the probability of 

survival from year t−1 to t for individuals that were breeders in year t−1, using the strict 

definition of breeder. 

Age Classes in Model Age at 
t−1 Single 3 4 

0-3 - - - 
4-7 0.92 (0.90, 0.94) 0.93 (0.90, 0.94) 0.90 (0.86, 0.94) 
8-14 0.92 (0.90, 0.94) 0.93 (0.90, 0.94) 0.93 (0.91, 0.95) 
15+ 0.92 (0.90, 0.94) 0.68 (0.51, 0.83) 0.68 (0.51, 0.83) 
 

Table 4: Mean and central 95% credible interval from each model for the probability of 

breeding in year t for individuals that were non-breeders of a certain age in year t−1, using 

the strict definition of breeder. 

Age Classes in Model Age at 
t−1 Single 3 4 
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0-3 0.25 (0.23, 0.26) 0.01 (0.01, 0.01) 0.01 (0.01, 0.01) 
4-7 0.25 (0.23, 0.26) 0.32 (0.29, 0.35) 0.30 (0.27, 0.34) 
8-14 0.25 (0.23, 0.26) 0.32 (0.29, 0.35) 0.35 (0.30, 0.39) 
15+ 0.25 (0.23, 0.26) 0.29 (0.16, 0.43) 0.29 (0.16, 0.43) 
 

Table 5: Mean and central 95% credible interval from each model for the probability of 

breeding in year t for individuals that were breeders of a certain age in year t−1, using the 

strict definition of breeder. 

Age Classes in Model Age at 
t−1 Single 3 4 

0-3 - - - 
4-7 0.65 (0.62, 0.69) 0.65 (0.62, 0.69) 0.65 (0.59, 0.72) 
8-14 0.65 (0.62, 0.69) 0.65 (0.62, 0.69) 0.66 (0.62, 0.69) 
15+ 0.65 (0.62, 0.69) 0.71 (0.52, 0.87) 0.71 (0.52, 0.87) 
 

Table 6: Mean and central 95% credible interval from each model for the probability of 

number of tags in year t given the number of tags in year t−1, using the strict definition of 

breeder. 

   Age Classes in Model 
Tags at t-1 Tags at t Single 3 4 

1 0 0.09 (0.08, 0.11) 0.09 (0.07, 0.11) 0.09 (0.07, 0.11) 
 1 0.91 (0.89, 0.92) 0.91 (0.89, 0.93) 0.91 (0.89, 0.93) 

2 0 0.05 (0.04, 0.07) 0.07 (0.06, 0.09) 0.07 (0.06, 0.09) 
 1 0.18 (0.16, 0.20) 0.17 (0.15, 0.19) 0.17 (0.15, 0.19) 
 2 0.77 (0.75, 0.79) 0.76 (0.73, 0.78) 0.76 (0.73, 0.78) 
 

Table 7: Summary of the posterior distribution for the deviance values from each model and 

the associated deviance-based Bayesian p-value, using the liberal definition of breeder. 

  Age Classes in Model 
  Single 3 4 
Mean 260086.5 259192.2 259196.7 
2.5%ile 259784.9 258895.1 258898.4 
97.5%ile 260375.2 259485.1 259491.5 
min 259444.5 258602.1 258563.4 
max 260681.8 259771.8 259840.5 
p-value 0.4274 0.2230 0.2322 
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Table 8: Mean and central 95% credible interval from each model for the probability of 

survival from year t−1 to t for individuals that were non-breeders of a certain age in year t−1, 

using the liberal definition of breeder. 

Age Classes in Model Age at 
t−1 Single 3 4 

0-3 0.89 (0.87, 0.90) 0.72 (0.70, 0.74) 0.72 (0.70, 0.74) 
4-7 0.89 (0.87, 0.90) 0.87 (0.85, 0.89) 0.88 (0.85, 0.90) 
8-14 0.89 (0.87, 0.90) 0.87 (0.85, 0.89) 0.87 (0.83, 0.90) 
15+ 0.89 (0.87, 0.90) 0.72 (0.59, 0.84) 0.72 (0.59, 0.84) 
 

Table 9: Mean and central 95% credible interval from each model for the probability of 

survival from year t−1 to t for individuals that were breeders of a certain age in year t−1, 

using the liberal definition of breeder. 

Age Classes in Model Age at 
t−1 Single 3 4 

0-3 - - - 
4-7 0.91 (0.89, 0.93) 0.92 (0.89, 0.94) 0.90 (0.86, 0.94) 
8-14 0.91 (0.89, 0.93) 0.92 (0.89, 0.94) 0.92 (0.90, 0.94) 
15+ 0.91 (0.89, 0.93) 0.67 (0.52, 0.81) 0.67 (0.52, 0.82) 
 

Table 10: Mean and central 95% credible interval from each model for the probability of 

breeding in year t for individuals that were non-breeders of a certain age in year t−1, using 

the liberal definition of breeder. 

Age Classes in Model Age at 
t−1  Single 3 4 

0-3 0.26 (0.24, 0.28) 0.01 (0.01, 0.01) 0.01 (0.01, 0.01) 
4-7 0.26 (0.24, 0.28) 0.36 (0.33, 0.39) 0.33 (0.29, 0.36) 
8-14 0.26 (0.24, 0.28) 0.36 (0.33, 0.39) 0.41 (0.36, 0.46) 
15+ 0.26 (0.24, 0.28) 0.33 (0.19, 0.48) 0.33 (0.19, 0.48) 
 

Table 11: Mean and central 95% credible interval from each model for the probability of 

breeding in year t for individuals that were breeders of a certain age in year t−1, using the 

liberal definition of breeder. 

Age Classes in Model Age at 
t−1 Single 3 4 

0-3 - - - 
4-7 0.69 (0.66, 0.72) 0.69 (0.66, 0.72) 0.68 (0.61, 0.73) 
8-14 0.69 (0.66, 0.72) 0.69 (0.66, 0.72) 0.69 (0.65, 0.73) 
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15+ 0.69 (0.66, 0.72) 0.65 (0.46, 0.81) 0.65 (0.46, 0.81) 
 

Table 12: Mean and central 95% credible interval from each model for the probability of 

number of tags in year t given the number of tags in year t−1, using the liberal definition of 

breeder. 

   Age Classes in Model 
Tags at t-1 Tags at t Single 3 4 

1 0 0.09 (0.08, 0.11) 0.09 (0.07, 0.11) 0.09 (0.07, 0.11) 
 1 0.91 (0.89, 0.92) 0.91 (0.89, 0.93) 0.91 (0.89, 0.93) 

2 0 0.05 (0.04, 0.07) 0.07 (0.06, 0.09) 0.07 (0.06, 0.09) 
 1 0.18 (0.16, 0.20) 0.17 (0.15, 0.19) 0.17 (0.15, 0.19) 
 2 0.77 (0.75, 0.79) 0.76 (0.73, 0.78) 0.75 (0.73, 0.78) 
 

 


