

The macroinvertebrates and algae of the Waiokotore and Potae Streams and Mangatera River, Ruahine Ranges

Department of Conservation *Te Papa Atawbai* The macroinvertebrates and algae of the Waiokotore and Potae Streams and Mangatera River, Ruahine Ranges

Author: Dr Alex James

F.I.S.H. Aquatic Ecology

Published by Department of Conservation Whanganui Conservancy Private Bag 3016 Whanganui New Zealand

Cover photo: The Mangatera River downstream of the confluence with Potae Stream

© Copyright December 2010, New Zealand Department of Conservation

ISBN: 978-0-478-14861-9 (print) ISBN: 978-0-478-14862-6 (online)

ISSN 1177-9365 - Te Tai Hauauru Whanganui Conservancy Fauna Series 2010/8 (print)

ISSN 1179-1659 - Te Tai Hauauru Whanganui Conservancy Fauna Series 2010/8 (online)

Contents

Introduction	5
Methods	7
Results	9
Physicochemical	9
Macroinvertebrates	15
Algae	20
Conclusions	23
Acknowledgements	24
References	24
Appendix	25
Environment Waikato Field Assessment Cover Form	25
Qualitative Habitat Assessment Field Data Sheet	26

Introduction

Some of the headwater streams and rivers of the Rangitikei River that originate in the Ruahine Ranges have populations of the threatened blue duck/whio (*Hymenolaimus malacorbynchos*). This duck species is restricted mainly to fast-flowing and turbulent rivers and streams in forested hill country and mountains. Numbers have declined significantly since European settlement due to land use change and introduced predators (Heather & Robertson, 1996). Blue duck dabble, dive and up-end in swift white water to feed on aquatic invertebrates which make up most of their diet. They eat mostly caddisfly larvae, but also mayfly, stonefly, and chironomid larvae that they find on the downstream sides of stones and boulders. Occasionally they take emerging adult insects on the surface as well as some algae and fruit (Heather & Robertson, 1996).

While predators are likely the main determinant of breeding success of whio, their food supply is also vitally important. There is concern to what the impacts of the invasive algae, *Didymosphenia geminata* would be on duck populations. There is the potential that this algae, if introduced to the blue duck rivers of the Ruahine Ranges, would alter the benthic macroinvertebrate community and thus impact on the blue duck diet.

This survey provides a snapshot of the macroinvertebrate and algal communities of four sites on headwater streams of the Rangitikei River catchment within the Ruahine Forest Park. These sites were in streams known to have populations of whio. Should *Didymosphenia geminata* ever become established, this data will provide an indication of previous conditions.

FIGURE 1: THE FOUR SITES ON THE WAIOKOTORE STREAM, POTAE STREAM, AND MANGATERA RIVER SURVEYED FOR MACROINVERTEBRATES AND ALGAE ON FEBRUARY 25 AND 26, 2009.

Methods

The four sites were selected as they were in close-proximity and had resident blue ducks (Figure: 1). A helicopter was used to access the area.

In-stream and riparian characteristics were assessed using the Qualitative Habitat Assessment Procedure developed by Environment Waikato (Collier & Kelly 2005). This procedure is derived from the revised USEPA Rapid Bioassessment Protocol and modified to suit local stream conditions. To assess stream habitat, the observer estimates the condition of each characteristic over at least a 100 m reach. Two data sheets are completed at each site, a Field Assessment Cover Form and a Habitat Assessment Field Data Sheet (see Appendix).

The Field Assessment Cover Form describes general watershed and instream characteristics. The coordinates of the sampling site were determined using NZMS 260 topographic maps and a Garmin Etrex Vista GPS unit. Stream wetted width was measured at five transects and water depths at the points where invertebrate samples were taken. Water velocity was estimated using a velocity head rod at the same points where depths were measured. Spot measures of temperature, specific conductivity, pH and dissolved oxygen were recorded with Extech ExStik II handheld meters. Other parameters such as the nature of the streambottom substrata and in-stream plant cover were estimated visually.

The Habitat Assessment Field Data Sheet comes in two variants, one for hard-bottomed and another for soft-bottomed streams. In this survey all sites were hard-bottomed. This form involves nine in-stream and riparian characteristics that the observer rates from optimal to poor on a 20 point scale (Table: 1, Collier & Kelly 2005). These are then summed to derive an overall score for the assessed site. The theoretical maximum possible score indicating optimal habitat is 180 while the minimum possible score indicating very poor habitat is 9.

CHARACTERISTIC	ASSESSES	IMPORTANCE
1. Riparian vegetative zone width	Assesses the extent of natural vegetation from the edge of the stream bank out through the riparian zone.	The vegetative zone is a buffer to pollutants entering a stream from runoff, controls erosion, provides habitat and organic matter input and provides shade. Generally, the wider, the better.
2. Vegetative Protection	Evaluates the amount and type of vegetative protection present on the bank and near-stream part of the riparian zone.	The root systems of plants growing on stream banks help hold soil in place and reduce the potential for bank erosion.
3. Bank stability	Assesses the erosion or potential erosion of stream banks.	Eroded banks indicate a problem of sediment movement and deposition.

TABLE 1: THE NINE IN-STREAM AND RIPARIAN CHARACTERISTICS INCLUDED ON THE HABITAT ASSESSMENT FIELD DATA SHEET FOR HARD-BOTTOMED STREAMS (ADAPTED FROM COLLIER & KELLY, 2005).

CHARACTERISTIC	ASSESSES	IMPORTANCE
4. Frequency of riffles or bends	Measures the sequence or frequency of riffles.	Riffles are a source of high-quality habitat and diverse fauna. Generally, a high frequency of riffles enhances the diversity of the stream community.
5. Channel alteration	A measure of large-scale changes in the shape of the stream channel.	Many streams have been straightened, deepened and channelized. Such streams have reduced habitat heterogeneity.
6. Sediment deposition	Measures sediment accumulation and changes to the stream bottom resulting from deposition.	Sediment deposition results from the large- scale movement of sediment. High levels of deposition are symptomatic of and unstable habitat that may be unsuitable for many organisms.
7. Velocity/Depth regimes	Assesses the diversity of flow environments.	The most diverse hard-bottomed streams have slow-deep, slow-shallow, fast-deep and fast- shallow flow environments. Greater habitat diversity generally equals greater taxonomic diversity.
8. Abundance and diversity of habitat	Assesses the relative quantity and variety of natural instream features.	The more diverse the range of microhabitats (e.g. cobble, large rocks, logs, branches, leaf packs) the greater the diversity of aquatic organisms.
9. Periphyton growth	Assesses the presence/absence of periphyton growth on the stream bed.	Lower algal biomass is preferable to high levels which can smoother the stream bed.

Benthic macroinvertebrates were sampled by taking five Surber samples (0.1 m² area, 500 μ m mesh size) from within riffles at each site. Samples were preserved in iso-propyl alcohol and washed through a 500 μ m sieve prior to sorting and identification. Macroinvertebrates were identified to the lowest possible level using Smith & Ward (2005) and Winterbourn, Gregson & Dolphin (2006). Chironomids were identified to sub-family where possible. Several macroinvertebrate metrics were calculated. The Macroinvertebrate Community Index (MCI) and its quantitative variant (QMCI) are biotic indices commonly used in New Zealand to assess organic enrichment in stony riffles in streams and rivers (Boothroyd & Stark, 2000). The Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) orders (EPT) are considered to be the most sensitive to declines in water and habitat quality in stony-bottomed streams and rivers. The percentage of EPT individuals and taxa are used to indicate the relative dominance of these insect orders. EPT animals tend to be found in greater numbers in less degraded streams. Hydroptilid trichoptera were excluded from the EPT calculations as they are algal piercers and thrive in high-algae environments and as such are often found in great numbers in degraded streams.

Periphyton was sampled by taking scrapings from four cm diameter circles from four rocks using scalpels. Rocks from close to the invertebrate sampling points were randomly selected. All the samples at each site were pooled. The periphyton samples were frozen as soon as possible and sent to NIWA for chlorophyll-*a*, ash-free dry weight (AFDW) and relative abundance analysis using the methodologies described in Biggs & Kilroy (2000).

Results

PHYSICOCHEMICAL

The sampling sites were all hard-bottomed dominated by gravel, cobble and boulder size substrate (see Appendix for size classes). Organic material and in-stream plant cover was minimal (Table: 2). It should be noted however that the Waiokotore Stream site had riffles with some moss cover that were sampled for macroinvertebrates (Figure: 2). At the macroinvertebrate sampling sites the streams were shallow, swift and highly oxygenated. All sites were within the Ruahine Forest Park and surrounded in native forest. The Mangatera River at Colenso Hut site was within a wide flood channel covered in exotic lupin shrubs.

TABLE 2: THE PHYSCIOCHEMICAL PARAMETERS OF FOUR STREAM SITES SAMPLED IN THE RUAHINE RANGES, FEBRUARY 2009.

	WAIOKOTORE STREAM (AT WAIOKOTORE BIVOUAC) (FIG. 2 & 3)	POTAE STREAM (MIGHT ACTUALLY BE A TRIBUTARY OF POTAE STREAM) (FIG. 4 & 5)	MANGATERA RIVER (DOWNSTREAM OF POTAE STREAM CONFLUENCE) (FIG. 6 & 7)	MANGATERA RIVER (AT COLENSO HUT) (FIG. 8 & 9)
Sampling date & time	25 Feb 2009, 8.40 am	25 Feb 2009, 4.40 pm	26 Feb 2009, 12.20 pm	26 Feb 2009, 10 am
Coordinates	E: 2778018, N: 6168233	E: 2780372, N: 6166298	E: 2778792, N: 6166053	E: 2779432, N: 6165648
Altitude	780 m	750 m	680 m	710 m
Stream-bottom substrata	Compaction: mostly a loose assortment with little overlap. Embeddedness: 51-75%	Compaction: moderately packed with some overlap. Embeddedness: <5%	Compaction: moderately packed with some overlap. Embeddedness: <5%	Compaction: no packing/ loose assortment easily moved. Embeddedness: <5%
Substratum size	Boulder 15% Cobble 35% Gravel 25% Sand 25% Silt trace	Boulder 20% Cobble 30% Gravel 40% Sand 10% Silt trace	Boulder 60% Cobble 30% Gravel 9% Sand 1%	Boulder 5% Cobble 30% Gravel 60% Sand 5%
Organic material (% cover)	Large wood: <5% Coarse detritus: <5% Fine organic deposits: <5%	Large wood: <5% Coarse detritus: <5% Fine organic deposits: <5%	Large wood: <5% Coarse detritus: <5% Fine organic deposits: 26-50%	Large wood: <5% Coarse detritus: <5% Fine organic deposits: <5%
Instream plant cover (% of stream bed)	Filamentous algae: <5% Macrophytes: <5% Mosses/Liverworts: <5%	Filamentous algae: <5% Macrophytes: <5% Mosses/Liverworts: <5%	Filamentous algae: <5% Macrophytes: <5% Mosses/Liverworts: <5%	Filamentous algae: <5% Macrophytes: <5% Mosses/Liverworts: <5%
Temperature	9.6 °C	12.4 °C	14 °C	10.8 °C
рН	9.15	9.26	8.32	8.7
Conductivity	226 µ8/cm	220 µS/cm	150.2 μS/cm	90.2 μS/cm
Dissolved oxygen	97.8%, 11.08 mg/L	88.3%, 9.3 mg/L	96.6%, 9.65 mg/L	95.6%, 10.29 mg/L
Stream width (m)	Mean: 8.6, Range: 5.3 - 11.1	Mean: 1.6 Range: 1.35 - 2.1	Mean: 5.14 Range: 4.1 - 7.2	Mean: 7.18 Range: 5.3 - 9.1

	WAIOKOTORE STREAM (AT WAIOKOTORE BIVOUAC) (FIG. 2 & 3)	POTAE STREAM (MIGHT ACTUALLY BE A TRIBUTARY OF POTAE STREAM) (FIG. 4 & 5)	MANGATERA RIVER (DOWNSTREAM OF POTAE STREAM CONFLUENCE) (FIG. 6 & 7)	MANGATERA RIVER (AT COLENSO HUT) (FIG. 8 & 9)
Depths (m)	Mean: 0.28	Mean: 0.16	Mean: 0.27	Mean: 0.16
	Range: 0.19 - 0.46	Range: 0.15 - 0.18	Range: 0.14 - 0.39	Range: 0.09 – 0.24
Velocity (m/s)	Mean: 0.61	Mean: 0.57	Mean: 0.88	Mean: 0.68
	Range: 0.44 - 0.99	Range: 0.31 - 0.77	Range: 0.70 - 1.1	Range: 0.44 – 0.89
Riparian character:	Within the Ruahine Forest Park. Native beech forest and shrubs partly shade the channel. The study reach is in a steep sided canyon.	Within the Ruahine Forest Park. Native beech forest and shrubs significantly shade the channel.	Within the Ruahine Forest Park with native beech forest and shrubs. Open canopy.	Within the Ruahine Forest Park with native beech forest and shrubs. Lupin covers the banks immediately next to the channel.

FIGURE 2: THE WAIOKOTORE STREAM HAD SOME SWIFTLY FLOWING PATCHES OF MOSS-COVERED SUBSTRATE.

FIGURE 3: THE WAIOKOTORE STREAM WAS SURROUNDED IN NATIVE VEGETATION.

FIGURE 4: THE POTAE STREAM SITE WAS THE SMALLEST STREAM SAMPLED. THIS MAY HAVE BEEN A TRIBUTARY OF THE ACTUAL POTAE STREAM.

FIGURE 5: THE POTAE STREAM SITE JUST UPSTREAM OF THE CONFLUENCE OF WHAT MAY BE THE ACTUAL POTAE STREAM.

FIGURE 6: THE MANGATERA RIVER SITE DOWNSTREAM OF THE CONFLUENCE WITH POTAE STREAM. THE FLOW WAS VERY SWIFT HERE.

FIGURE 7: AT THE MANGATERA RIVER SITE DOWNSTREAM OF THE CONFLUENCE WITH POTAE STREAM, LARGE LIMESTONE BOULDERS CAUSED THE FORMATION OF DEBRIS DAMS.

FIGURE 8: THE MANGATERA RIVER SITE AT COLENSO HUT HAS A WIDE FLOOD CHANNEL COVERED PREDOMINANTLY IN LUPIN.

FIGURE 9: FACING DOWNSTREAM AT THE MANGATERA RIVER AT COLENSO HUT SITE. THE HUT CAN BE SEEN IN THE MID-RIGHT OF THE PHOTO.

Overall, the Qualitative Habitat Assessment scored the four sampled sites highly considering the maximum score is 180. The streams had high quality riparian conditions and high in-stream habitat diversity (Table: 3).

TABLE 3: QUALITATIVE HABITAT ASSESSMENT RESULTS OF FOUR STREAM SITES SAMPLED INTHE RUAHINE RANGES, FEBRUARY 2009 (MAXIMUM SCORE = 20, MINIMUM SCORE = 1).

	WAIOKOTORE STREAM (AT WAIOKOTORE BIVOUAC)	POTAE STREAM (MIGHT ACTUALLY BE A TRIBUTARY OF POTAE STREAM)	MANGATERA RIVER (DOWNSTREAM OF POTAE STREAM CONFLUENCE)	MANGATERA RIVER (AT COLENSO HUT)
1. Riparian vegetative zoo width	ne 20	20	20	20
2. Vegetative protection	20	20	20	10
3. Bank stability	19	19	15	10
4. Frequency of riffles	18	19	20	18
5. Channel alteration	20	20	20	20
6. Sediment deposition	14	19	18	14
7. Velocity & depth regin	nes 17	14	19	10
8. Abundance and diversion of habitat	ity 15	18	19	16
9. Periphyton	10	9	14	14
Total	153	158	165	132

MACROINVERTEBRATES

The Waiokotore Stream site had a higher density of macroinvertebrate than the other sites and also a greater number of taxa (Table: 4). Some samples from this site were from moss-covered substrate and these tended to contain large numbers of macroinvertebrates. The MCI and QMCI scores of all four sites indicated "clean water". All sites were above the minimum QMCI score of 6 stated in the Proposed One Plan for this sub-catchment of the Rangitikei River. At all the sampled sites, except the Waiokotore Stream, the EPT orders comprised greater than 90% of all individuals captured (Table: 4).

TABLE 4: MEAN MACROINVERTEBRATE METRICS OF FOUR STREAM SITES SAMPLED IN THE RUAHINE RANGES, FEBRUARY 2009 (N = 5). S.D. = STANDARD DEVIATION.

	WAIOKOTORE STREAM (AT WAIOKOTORE BIVOUAC)	POTAE STREAM (MIGHT ACTUALLY BE A TRIBUTARY OF POTAE STREAM)	MANGATERA RIVER (DOWNSTREAM OF POTAE STREAM CONFLUENCE)	MANGATERA RIVER (AT COLENSO HUT)
Total individuals	1195.6, (S.D. 1010.1)	337.2, (S.D. 257.5)	231.4, (S.D. 146.7)	281.6, (S.D. 57.4)
(per 0.1 m2)	(Range: 325 - 2796)	(Range: 49 - 624)	(Range: 28 - 418)	(Range: 194 - 336)
Total taxa	24.6, (S.D. 3.8)	19.6, (S.D. 9.1)	13.8, (S.D. 1.9)	17.8, (S.D. 3.3)
(per 0.1 m2)	(Range: 21 - 29)	(Range: 6 - 30)	(Range: 11 - 16)	(Range: 14 - 21)
MCI	122.4, (S.D. 8.6)	152.6, (S.D. 13.3)	144.3, (S.D. 7.4)	135.9, (S.D. 6.4)
	(Range: 116.2 - 137.1)	(Range: 141.3 - 172.5)	(Range: 136.4 - 153.8)	(Range: 124.8 - 140)
QMCI	6.1 (S.D. 1.2)	8.1, (S.D. 0.2)	8.3, (S.D. 0.2)	8.2, (S.D. 0.3)
	(Range: 4.4 - 7.2)	(Range: 7.9 - 8.4)	(Range: 8.0 - 8.6)	(Range: 7.8 - 8.7)
% EPT individuals	68.3, (S.D. 17.4)	91, (S.D. 5.3)	91.3, (S.D. 4.1)	93.6, (S.D. 3.5)
	(Range: 37.9 - 81.8)	(Range: 87.8 - 95.9)	(Range: 85.7 - 95.6)	(Range: 90.2 - 98.9)
% EPT taxa	60.0, (S.D. 5.5)	65.9, (S.D. 9.1)	68.4, (S.D. 10)	68.3, (S.D. 7.2)
	(Range: 53.6 - 66.7)	(Range: 59.1 - 81.3)	(Range: 60 - 84.6)	(Range: 61.9 - 78.6)

Samples from the Waiokotore Stream had high numbers of the cased caddisflies, *Confluens hamiltoni* and *Zelolessica cheira* which are taxa often associated with moss-covered substrates in swiftly flowing streams. This was also the only site to have significant numbers of Chironomidae larvae, predominantly Orthocladiinae (Table: 5). Potae Stream (possibly a tributary of the actual Potae Stream) was the smallest stream sampled, and was dominated by EPT taxa, especially the cased caddis *Beraeoptera roria* (Table 5). The two sites on the Mangatera River were dominated numerically by the mayfly *Deleatidium sp.* and stonefly *Zelandoperla sp.* (Table: 5).

6.	
õ	
2	
Х	
Ř	
J.A	
R	
- AB	
Æ	
Ś	
E	
ž	
R	
Я	
Ë	
Ĥ	
- F	
Ď	
Ч	
用	
Ē	
Z	
Ξ	
B	
Ľ	
-H	
R	
ŝ	
ES	
E	
S	
Ę	
EA	
R	
S	
К	
2	
E E	
5	
ō	
ž	
Щ. Ц	
ž	
A	
Æ	
5	
õ	
Ř	
N.	
Ľ	
Ä	
P	
E	
Q	
Δ	
2	
\mathbf{R}	
щ	
Υ	
R	
EB	
E	
ER	
\geq	
Ę	
2	
S	
A	
Σ	
ŝ	
щ	
BL	
Ľ	

	TAXON	WAI A	WAI B	WAI C	D	WAI N E	IEAN	POT 1 A	POT I B	POT] C	POT I D	POT M E	EAN N	ADS A	ADS N B	C C	D DS M	DS ME E	r N N	IC M	IC M		IC M	C MI	IAN
Ephemeroptera	Austroclima sepia	104	48	156	-	0	61.8	$\tilde{\mathbf{c}}$	-	2	0	9	2.4	0	0	0	0	0		0	0	0	0		0
	Coloburiscus bumeralis	œ	0	0	4	~	3.8	22	ŝ	14	0	29 1	3.6	0	0	0	-	0 0	7	0	0	0	0	0	.2
	Deleatidium sp.	34	æ	æ	76	44	34	58	19	80	г	45 4	1.8	99	90	82 1	26	7 94	2	6 15	55 19	1 1	47 10	6 1	47
	Nesameletus ornatus	0	0	0	0	0	0	1	0	0	0	0	0.2	×	2	Ś	Ś	0	сч 	2	1 1	7	1	2 -	4.4
Plecoptera	Austroperla cryene	4	0	×	7	4	3.6	-	4	~	0	2	5.8	Ś	4	32	5	1 11	4	, S	4	. 1	1 1	8	4.
	Megaleptoperla sp.	8	0	8	16	Ś	7.4	3	3	5	0	4	3	3	2	4	4	0 3.	7		7	4	5		4
	Taraperla pseudocyrene	73	32	80	-	0	37.2	0	0	7	0	0	0.4	0	0	0	0	0		0	0	0	0		0
	Zelandobius confusus-group	0	20	0	0	0	4	0	0	4	0			0	0	0	0	0		0	-	0	0	0	0.2
	Zelandoperla sp.	7	12	112	6	29	32.8	9	-	=	6	8	7	46	68	86	30	5 63	.6	9 1	11	6 2	3	5	0.2
	Stenoperla prasina	0	0	0	-	0	0.2	Т	0	-	0	0	0.4	0	0	0	0	0		0	0	0	0	-	0
Trichoptera	Aoteapsyche sp.	0	8	8	0	0	3.2	0	0	0	0	0	0	-	г	0	51	0 5.	8	~	~	_	~		5
	Alloecentrella magnicornis	-	0	4	0	0	1	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	-	0
	Beraeoptera roria	43	8	16	48	150	53	383	26	370	22	224 2	205	13	11	35	8	5 16	6 4.	8	5	4 2	i6 2	7 3	0.4
	Confluens bamiltoni	134	132	264	-	13	108.8	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	_	0
	Costachorema callistum	0	0	0	0	0	0	0	0	7	0	0	0.4	0	7	0	0	1 0	9	-	0	0	0	0	0.2
	Costacborema hecton	0	0	0	0	Ś		0	0	0	0	0	0	0	0	0	0) 0		0	0	0	0	0	0

	TAXON	WAI	WAI	WAI	WAI	MAI	MEAN	POT	POT	POT	POT	POT M	EAN N	ADS N	ADS M	IDS M	DS M.	DS ME	AN N	IC N	4C N	4C	1C M	C V	EAN
		¥	в	C	D	н		V	в	U	D	н		V	в	U	0	ш	,	₹	B	υ	0	[1]	
	Helicopsyche sp.	0	0	0	0	0	0	-	4	52	ν	24 1	2.4	0	0	0	0			0	0	0	0		0
	Hudsonema alienum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0.2
	Hydrobiosis falcis	10	12	16	-	ю	8.4	0	0	0	0	0	0	0	0	0	0			0	0	0	0		0
	Hydrobiosis umbripennis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-	0	3	0	1
	Hydrobiosis parumbripennis	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	×.	0	0	2	0	0	0.8
	Hydrobiosis soror	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) с	C	0	0	0	0	_	0.2
	Olinga feredayi	0	0	0	Ś	0		0	-	9	0	0	1.4	8	~	21	33	11 0	8.	6	3	8	7	-	9.6
	Orthopsyche sp.	0	0	0	0	7	0.4	10	4	~	0	6	9	0	0	0	0		_	0	0	0	0		0
	Oxyetbira albiceps	s,	0	0	0	0	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Plectrocnemia maclachlani	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	-	0	_	0.6
	Psilochorema leptoharpax	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	4	7	1	6	0	10	3.4
	Psilochorema macrobarpax		0	0	9	7	1.8			\mathfrak{K}	0	4	1.8		0	0	-	0	4	0	0	0	0	_	0
	Zelolessica cheira	206	104	256	0	7	113.6	-	-	Ś	0	0	1.4	0	0	0	0	4 0	8.	0	0	0	0		0
	Pycnocentria evecta	23	100	16	0	0	27.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pycnocentria funerea	60	26	72	49	16	54.6	4	▶	35	0	18 1	12.8	0	0	0	0	0	0	0	0	0	0	0	0
	Pycnocentrodes st).368	240	36	16	Ś	133	5	0	4	0	Ś	2.2	5	0	5	0		_	-	0	-	Ś	0	1.4
Diptera	Aphrophila sp.	-	0	0	2	ж	1.2	33	0	3	0	Ś	2.2	-	0	4		0 1	9.	.6	0	-	4	2	2

	TAXON	WAI	IAN .	М.М.	WAI	IVM	MEAN	POT	POT	POT	POT	POT M	EAN A	ADS A	4DS M	M SOL	DS M.	DS ME ²	M NA	N N	C	C	C MC	MEA	Z
		V	а	0	a	ц		V	а	0	a	щ		V	я		2	'T	V	<u>ц</u>	~	-	ਸ -		
	Austrosimulium s	p. 0	0	0	-	0	0.2	0	0	0	0	0	0	0	0	0					5		0	0.4	
	Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	C	0	0	0	-	0.2	•
	Diamesinae - <i>Maoridiamesa</i> sp.	10	16	76	7	13	23.4	7	0	0	0	0	0.4	0	0	0	0	0	0	0	0	0	0	0.2	•
	Empididae	19	8	28	0	0	11	0	0		0	0	0.2	0	0	0	6	0 (-	Ŭ	0	0	0	0.2	01
	Ephydridae	-	0	0	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
	Eriopterini	0	0	0	0	0	0	4	3		0		1.8	0	0	0	6	0	-	Ŭ	0		4	1.2	~
	Eriopterini - <i>Molophilus</i> sp.	0	0	0	0	0	0	1	0	Т	0	0	0.4	0	0	0	0	0	J	0	0	0	0	0	
	Hexatomini	0	0	0	-	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
	Muscidae	0	4	8	4	0	3.2	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0.2	~ 1
	Orthocladiinae	66	184	1476	10	27	359.2	0	0	9	0	4	5	0	0	4	0	l 1.	4 C	0	8	~	0	1.8	~
	Peritheates sp.	0	0	0	0	0	0	0	0	0	Ś	5	1.4	0	0	0	0	0	0	0	0	0	0	0	
	Psychodidae	0	0	0	-	0	0.2	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0	0	
	Chironominae - Polypedilum sp.	0	0	0	0	7	0.4	${\mathfrak c}$	0		0	7	1.2	0	0	7	0	0 0.	4		ц,	6	۲ ۳	4	
	Chironominae - Tanytarsini	61	28	4	${\mathfrak c}$	0	19.2	7	0	-1	0	0	9.0	0	0	0	0	1 0.	5		0		1	0.2	~
	Tabanidae	0	0	0	-	0	0.2	0	0	0	0	0	0	0	0	0	0	0 0	0		0		0	0	
	Tanypodinae	-	0	8	0	0	1.8	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	
	Tipulidae - unknown sp.	0	0	0	0	0	0	-	0	0	0	0	0.2	0	0	0	0	0			0	0	0	0	
Coleoptera	Elmidae	91	48	120	36	10	61	3	Ś	=	0	7	4.2	16	~	19	8	1 10.	2		-		6	4.6	
	Hydraenidae	22	4	8	16	8	11.6	7	\sim	12	0	7	4.6	-	0	5	-	.0 C	8	0	0	0	3	0.0	<u>`</u> c
	Ptilodactylidae	4	0	0	0	0	0.8	0	0	-	0	0	0.2	0	0	0	0	0		0	0	0	0	0	

	TAXON	WAI A	WAI B	WAI C	D D	WAI E	MEAN	POT A	POT B	POT C	POT D	POT M E	EAN M	IDS N A	IDS M B	C C	D M	IDS ME. E	AN M	BB	OO	C M	C M	C MEA	N
Megaloptera	Archichauliodes diversus	9	0	0	11	1	3.6	0	0	0	0	1	0.2	1	ŝ	ŝ	7	1 2	0	0	1	5	1	2.6	
Mollusca	Potamopyrgus antipodarum	0	0	0	0	0	0	0	0	Ś	0	1	1.2	0	0	0	0	0 0	0	0	0	0	0	0	
Oligochaeta		1	0	0	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	
Nematomorpi Gordian worn	ha (horsehair/ us)	0	0	0	0	0	0	0	0	1	0	0	0.2	0	0	0	1	0 0.	5	0	0	0	0	0	
Nematode		0	16	8	-	0	Ś	0	0	0	0	0	0	0	0	0	0	0 0	0	1	0	0	0	0.2	~
Acari		0	0	0	0	0	0	0	0	0	-	0	0.2	0	0	0	0	0 0	0	0	0	0	0	0	
WAI = Waiok POT = Potae	totore Stream Stream																								

MDS = Mangatera River downstream of Potae confluence MC = Mangatera River at Colenso Hut.

ALGAE

Ash-free dry weight and chlorophyll-*a* concentrations were much higher at the Waiokotore Stream compared to the other three sites (Table: 6). The moss content of the algal sample at this site contributed to these high values. This was also the only site to have chlorophyll-*a* levels higher than the suggested maximum of the Proposed One Plan (0.012 mg/cm²) for this Rangitikei River sub-catchment, again because of the moss content. This site also had a higher number of taxa and was the only site where green filamentous and cyanobacteria taxa were found (Table: 6 & 7).

At all sites the algal community was dominated by diatoms and at Potae Stream and the two Mangatera River sites, diatoms were the only algal group present in samples (Table: 7). The Waiokotore Stream sample was of special interest to NIWA who have kept the sample as reference material. It has an interesting mixture of species (e.g. two species of *Cocconeis*), is relatively diverse and has a couple of diatom species that could not be definitely identified without acid-cleaning the sample (pers. com. Cathy Kilroy, NIWA).

TABLE 6: ALGAL METRICS OF FOUR STEAM SITES SAMPLED IN THE RUAHINE RANGES, FEBRUARY 2009.

	WAIOKOTORE STREAM (AT WAIOKOTORE BIVOUAC)	POTAE STREAM (MIGHT ACTUALLY BE A TRIBUTARY OF POTAE STREAM)	MANGATERA RIVER (DOWNSTREAM OF POTAE STREAM CONFLUENCE)	MANGATERA RIVER (AT COLENSO HUT)
Ash-free dry weight (mg/cm ²)	5.13	0.35	0.25	0.24
Chlorophyll <i>a</i> (mg/cm ²)	0.02934	0.00166	0.00080	0.00030
Total taxa (per sample)	17	9	8	9

	TAXON	WAIOKOTORE STREAM	POTAE STREAM	MANGATERA RIVER (Downstream of Potae confluence)	MANGATERA RIVER (AT COLENSO HUT)
Green filaments	Spirogyra spp.	_			
Green (Non filamentous)	Little green balls	ŝ			
Diatoms	cf. Acbnanthes lanceolata				1
	Cocconeis pediculus	5			
	Cocconeis placentula	ŝ	-	7	Т
	Cymbella kappii	4			
	Diatoma tenuis	5			
	Diatomella sp.				
	Diatoma vulgaris				
	Encyonema minutum	3	4	2	3
	Epithemia turgida	4	1		
	Epithemia sorex				
	Eunotia cf. incisa				Т
	Fragilaria vaucheriae			1	
	Gompboneis minuta var. cassiea	e 6	ç	×	5
	Gomphonema spp. 20um (small)		7	Ń	8
	Navicula cf. cryptocephala			1	
	Navicula cf. gregaria		2		
	Navicula lanceolata				2
	Navicula (small 15-20)				2

TABLE 7. THE RELATIVE ABUNDANCES OF ALGAL TAXA AT FOUR STREAM SITES IN THE RUAHINE RANGES, FEBRUARY 2009.

	TAXON	WAIOKOTORE STREAM	POTAE STREAM	MANGATERA RIVER (DOWNSTREAM OF POTAE CONFLUENCE)	MANGATERA RIVER (AT COLENSO HUT)
	Navicula cf. margilithi	8	ø		
	Nitzschia dissipata				
	Nitzschia cf. gracilis				
	Nttzschia linearis		ŝ		
	Nitzschia (fine)		1		
	<i>Nitzschia</i> (small skinny)	3			
	Nttzschta (small)	7			
	Rboicosphenia abbreviata	3			
	Rbopalodia novae-zealandiae				
	Rbopalodia musculus	5			
	Rossithidium linearis	æ		7	-
	Synedra ulna var. biceps	7			
	Synedra ulna var. ramesi				
Cyanobacteria	Nostoc spp.	Ń			
	Phormidium spp.				
	cf. Lyngbya				
Comments		Detritus and green plant parts	Detritus, not much algae	Detritus	Detritus, not much algae plant parts
Relative abundance interpretatio	<pre>on scores: 1 = rare 2 = rare-occasional 3 = occasional 4 = occasional-common 5 = common 6 = common-abundant 7 = abundant. 8 = dominant.</pre>				

Conclusions

- As one would expect of headwater streams within the Ruahine Ranges, the study streams had high quality riparian conditions (e.g. native forest) although exotic lupins had colonised the wide flood channel of the Mangatera River at Colenso Hut site.
- The water at all sites was highly oxygenated, swift and shallow with a stony stream bed. The Environment Waikato Qualitative Habitat Assessment scored all sites highly.
- All sites had a macroinvertebrate community indicative of high habitat and water quality. MCI and QMCI scores indicated 'clean water' and all sites were dominated by the sensitive EPT (mayflies, stoneflies, caddisflies) invertebrates. The Waiokotore Stream site had the highest densities of invertebrates and the greatest number of taxa. This was likely related to the moss-covered substrate of this site providing a more complex habitat and food source than the smooth rocks sampled at other sites.
- Algal biomass was low at all sites except Waiokotore Stream where the high moss content of samples contributed to higher ash-free dry mass and chlorophyll-*a* levels. All sites were dominated by diatoms as is often the case in streams draining forested catchments with no artificial nutrient inputs.
- Overall, the four sites sampled in the Ruahine Forest Park could be considered to be pristine and not significantly different in terms of macroinvertebrates and algae than they were prior to human settlement.
- All sites have abundant macroinvertebrate food and swift-flowing feeding habitat for whio.

Acknowledgements

I thank Logan Brown and Lorraine Cook of the Department of Conservation for organising transport, accommodation and food and assisting with fieldwork.

References

- Biggs B. J. F., Kilroy, C. (2000) *Stream periphyton monitoring manual*. NIWA, Christchurch.
- Boothroyd I, Stark J. (2000) Use of invertebrates in monitoring. In: Collier K.J.; Winterbourn M.J. eds. New Zealand invertebrates: ecology and implications for management. New Zealand Limnological Society, Christchurch. Pp. 344 - 373.
- Collier K., Kelly J. (2005) Regional guidelines for ecological assessments of freshwater environments – macroinvertebrate sampling in wadeable streams. *Environment Waikato Technical Report TR2005/02*.
- Heather B. D., Robertson H. A. (1996) The field guide to the birds of New Zealand. Viking, Auckland.
- Smith B., Ward J. (2005) A guide to the New Zealand Hydrobiosidae caddisflies. NIWA, Hamilton.
- Winterbourn M. J., Gregson, K.L.D., Dolphin, C.H. (2006) *Guide to the aquatic insects of New Zealand*. Bulletin of the Entomological Society of New Zealand 14.

Appendix

ENVIRONMENT WAIKATO FIELD ASSESSMENT COVER FORM

Field Assessm	ent Cover I	Form	4		0			
Wadeable Hard-B	ottomed and	Soft-Botton	ned Streams	\$				
STREAM NAME:			ASSESSOR:					
SITE NUMBER:	SAMPLE NUMB	ER:	DATE:	TI	ME (NZS	ST):		
GPS COORDINATES:	Downstream en Upstream end c	d of reach - East of reach - Easti	ing – ng –	No	orthing - orthing -	-		
CHANNEL AND RIPAR	IAN FEATURES		INSTREAM HY	DRAUL	C CON	DITIONS		
Canopy Cover:			Estimated or m	easured	reach av	/erage:		
O Open O Partly sh	aded 🔿 Signifi	cantly shaded						
Fencing:	Dominant Ripari	an Vegetation:	Stream width	(active o	hannel)	m		
O None or ineffective	O Crops etc	O Retired vege.	Stream width	(water)		m		
O One side or partial	O Pasture	O Native shrub	Stream depth			m		
O Complete both sides	O Exotic trees	O Native trees	Surface veloci	ity		m/sec		
WATER QUALITY	0	01101101000						
Temperature:	°C	Co	nductivity:	µS/	cm @ 25	°C		
Dissolved Oxygen:	%							
Turbidity: O Clear	Slightly turbid	O Stained) Other					
STREAM-BOTTOM SUE	BSTRATA			· · ·				
Compaction (inorganic s O assorted sizes tightly O moderately packed w	% surficial composi	l inorgar tion (sh	nic subs ould sum	tratum size to 100%)				
O mostly a loose assor	tment with little ov	Substratum	Dime	nsion	Percentage			
O no packing / loose as	ssortment easily m	type	(middl	dle axis)				
(% gravel-boulder particl	es covered by fine	Bedrock						
○<5% ○5-25%	026-50% 051-	Boulder	> 25	6mm				
	0/	Cobble	ble >64-256mm					
Large wood (>10 cm dia	% COVEF)	Gravel >2-64mm						
O<5% O5-25% (D26-50% O51-7	Sand >0.06-2mm						
Coarse Detritus (small)	wood, sticks, leave	Silt 0.004-0.06mm						
O<5% O5-25% (Fine (<1 mm) Organic O<5% O5-25% ()	⊃26-50% ⊙51-7 Deposits (edges a ⊃26-50% ⊙51-7	Clay	<0.004mm					
INSTREAM PLANT CON	/ER (% of stream		IS SAME		of effort: each			
Filamentous Algae (>2r O<5% O5-25% (nm long) & Mats D26-50% 051-7	(>3 mm thick): 5% O>75%	column should s	sum to 10	00%)	or enore, each		
macrophytes:	026-50% 051-7	5% 0575%	Stones:	%	Riffles	. %		
Mosses/Liverworts:	20.0010 (001-)	010 041070	Wood:	%	Rups	0%		
O<5% O5-25% C	026-50% 051-7	5%)>75%	Edges:	%	i vano.			
COMMENTS		*****	NO. INVERTEB	RATES	RETURI	NED:		
			Koura:	S	hrimps: _			
			Crabs:	M	ussels:			
			Others (specify)	. <u> </u>				
			Species of mus	ssel (ticł	0			
			Hvridella		Cucur	merunio		
			Shell smooth; 100mm long; va shell shape	up riable	to Nodul upper to 90n	es and ridges on part of shell; up nm long		

QUALITATIVE HABITAT ASSESSMENT FIELD DATA SHEET

Wadeable Har	d-B	otto	ome	ed S	Stre	ams	5													
Qualitative Habitat A	ssess	ment	Field	l Dat	a She	et														
STREAM NAME:										SI	TE N	UMBI	ER:						0.579	
SAMPLE NUMBER:					ASS	ESSC	R:			D	ATE:									
Habitat Parameter										Categ	ory				dia.					
n prisklinger sonder in sonder sonder en sonder sonder sonder sonder sonder sonder sonder sonder sonder sonder T		0	ptim	al			Subo	optin	nal			Mar	gina					Po	100	
1. Riparian Vegetative Zone Width (score each bank; determine left or right side by facing downstream)	• •	3anks buffer Contir dense	ilde v is >1 huous	egeta Om anc	ation 1	•	Bank buffei Mosti	side \ r is <' y con	veget 10m ntinuc	ation ous	•	Path and/c acce Most over	ways or sto ss to ly he	pres ck strea aled	ent m	•	Brei Hun obv	aks i nan ious	freque activi	ənt ty
Left bank	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Right bank	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Mean LB&RB	nodi Antonio Astro		CHUL AN Frank M	and the second s	husiden Alls Galago (* 190			and a start					i i i i i i i i i i i i i i i i i i i	الي و و الفعار الحجاري (analisi Ngangan Ngangan	olinunsi Protisi	33039455 (2006)	39498.24 (39498.24 (39596)	300933934 2021 - 2202	na spisesis. California
2. Vegetative Protection (score each bank; determine left or right side by facing downstream	•	Bank : mmec zones native Trees shrubs plants Veget minim	surfa cove vege , und s, or i pres ative	ces a ripari ered t etatio ersto non-v ent disru	ind an by rey voody iption	•	Bank cover native Disru Bank cover forest	surfa ed m > veg ption s may red by try	aces iainly etatic evide y be y exo	by on ent	•	Bank cove mixtu grass black and i trees Vege disru Bare crop vege com	surfaces of ses/sickberry introduces of ses/sickberry intr	aces y a hrubs /, will- luced n obvic closel	i, ow ous y	•	Ban covi and Disr stre veg Gra graz Sig dan	k su ered upti- amb etati ss h zed nific nage	Inface by gi ubs on of ank ion ve leavily ant si to th	s rasses ry high / iock e bank
Left bank	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Right bank	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Mean LB&RB	Sec. 1		19 90) 19 90) 19 90	n an de la Angelerie				i (" avon") Sesaruips		i i se se Sel sel sel "N	inere)	10,00 30,000 30,00000 30,0000 30,00000000	, Ardents & Jøre, Sold		e e e e e e e e e e e e e e e e e e e	04. (da) 1994 - S	il-aversas estevenent	e ASOEAS Quadrata	en sources Manageren Manageren	estracy.
3. Bank Stability (score each bank; determine left of right side by facing downstream	 Banks stable Erosion/bank failure absent or minimal <5% of bank affected 				 Moderately stable Infrequent, small areas of erosion mostly healed over 5-30% of bank eroded 				ole III n over	 Moderately unstable 30-60% of bank reach has area of erosion High erosion potential during floods 					•	Uns Mar 60-' has	tabl 1y er 100% ero	e roded % of b siona	areas eank scars	
Left bank	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Right bank	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Mean LB&RB	ins order the Instantion			ale de la serie Referencias	kani Katen dari	ante server		188,03984 1995, A.J. 1995, A.J.	ANTSERS ALCIASSI	e de la reaction Restance de la company		alist sold Silver	nici s za Miciakan	nander en der Generalie	9990032 37266-3		ni ni ni ni Ni ni ni ni ni Ni ni	NGNANA NGNANA NGNANA	STREET AND THE RESIDENCE STREET AND	GROKOWSKI) SCORONSKI C
4. Frequency of Riffles	•	Riffles Distar riffles width Variet key	i relat int ice be divide of str y of h	tively etwee ed by eam nabita	en / = 5-7 at is	•	Occu infrec Dista riffles width 15	rrenc juent nce b divid of str	e of r betwe led by ream	riffles en y = 7-	•	Occa or ru Botto provi habit Dista riffles width 15-2	assion n om co ide so ide so i	nal riff ontour ome oetwe ded b tream	fle rs ien y	•	Ger sha Poo Dist riffle widt >25	ieral llow r ha anci s di th of	lly flat riffles bitat e betv vided ' strea	water, veen by m =
SCORE	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

SUBTOTAL : _____

Habitat Parameter		legory		
	Optimal	Suboptimal	Marginal	Poor
5. Channel Alteration	 Changes to channel/dredging absent or minimal Stream with normal pattern 	 Some changes to channel/dredging Evidence of past channel/dredging Recent channel/dredging not present 	 Channel changes/dredging extensive Embankments or shoring structures present on both banks 40 to 80% of reach channelised and disrupted 	 Banks shored with gabion or cement >80% of the stream reach channelised and disrupted. Instream habitat altered or absent
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
6. Sediment Deposition (out of channel and in channel)	 Little/no islands or point bars present <20% of the bottom affected by sediment deposition 	 New increase in bar formation, mostly from gravel, sand or fine sediment 20-50% of the bottom affected Slight deposition in pools 	 Some deposition of new gravel, sand or fine sediment on old and new bars 50-80% of the bottom affected Sediment deposits at obstructions, constrictions, and bends 	 Heavy deposits of fine material Increased bar development >80% of the bottom changing frequently Pools almost absent due to sediment deposition
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
7. Veloctity/Depth Regimes	 4 velocity/depth regimes present Slow/deep, Slow/shallow, Fast/shallow, Fast/deep 	 3 of 4 velocity/depth regimes present If fast/shallow is missing then score lower 	 2 of 4 velocity/depth regimes present If fast/shallow or slow/shallow are missing score low 	 Dominated by 1 velocity/depth regime Usually slow/deep
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
8. Abundance and Diversity of Habitat	 >50% substrate favourable for invertebrate colonisation and wide variety of woody debris, riffles, root mats Snags/ submerged logs/ undercut banks/ cobbles provides abundant fish cover Must not be new or translent 	 30-50% substrate favourable for invertebrate colonisation Snags/submerged logs/undercut banks/cobbles Fish cover common Moderate variety of habitat types. Can consist of some new material 	 10-30% substrate favourable for invertebrate colonisation Fish cover patchy 60-90% substrate easily moved by foot Woody debris rare or may be smothered by sediment 	 <10% substrate favourable for invertebrate colonisation Fish cover rare or absent Substrate unstable or lacking Stable habitats lacking or limited to macrophytes
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
10. Periphyton	 Periphyton not visible on hand heid stones Stable substrate Surfaces rough to touch 	 Periphyton not visible on stones Stable substrate Periphyton obvious to touch 	 Periphyton visible <20% cover of available substrate 	 Periphyton obvious and prolific >20% cover of available substrate
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
Total Score	NB: Use only means of LB a	and RB values		